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Abstract

Human schistosomiasis—or bilharzia—is a parasitic disease caused by trematode flukes of the 

genus Schistosoma. By conservative estimates, at least 230 million people worldwide are infected 

with Schistosoma spp. Adult schistosome worms colonise human blood vessels for years, 

successfully evading the immune system while excreting hundreds to thousands of eggs daily, 

which must either leave the body in excreta or become trapped in nearby tissues. Trapped eggs 

induce a distinct immune-mediated granulomatous response that causes local and systemic 

pathological effects ranging from anaemia, growth stunting, impaired cognition, and decreased 

physical fitness, to organ-specific effects such as severe hepatosplenism, periportal fibrosis with 

portal hypertension, and urogenital inflammation and scarring. At present, preventive public 

health measures in endemic regions consist of treatment once every 1 or 2 years with the 

isoquinolinone drug, praziquantel, to suppress morbidity. In some locations, elimination of 

transmission is now the goal; however, more sensitive diagnostics are needed in both the field and 

clinics, and integrated environmental and health-care management will be needed to ensure 

elimination.
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Introduction

Schistosomiasis—also known as bilharzia—is an infectious disease that affects more than 

230 million people worldwide, according to conservative estimates.1,2 It is caused by 

trematode parasites of the genus Schistosoma;3 the adult male and female worms live within 

the veins of their human host, where they mate and produce fertilised eggs. The eggs are 

either shed into the environment through faeces or urine, or are retained in host tissues 

where they induce inflammation and then die. The eggs that reach freshwater will hatch, 

releasing free-living ciliated miracidia that then infect a suitable snail host. In the snail, the 

parasite undergoes asexual replication through mother and daughter sporocyst stages, 

eventually shedding tens of thousands of cercariae (the form infectious for human beings) 

into the water. The asexual portion of the lifecycle in the snail (figure 1) requires 4–6 weeks 

before infectious cercariae are released. After cercariae penetrate the skin of the mammalian 

host, the maturing larvae (schistosomula) need about 5–7 weeks before becoming adults and 

producing eggs. These intervals (in both the snail and human being) are termed prepatent 

periods, when the infection is ongoing but release of cercariae (from snails) or eggs (from 

humans) cannot be detected. Cercariae can remain infective in freshwater for 1–3 days, but 

deplete their energy reserves greatly over a few hours.4 Eggs—whether excreted or retained 

in the body—die within 1–2 weeks after being released by the female worm.

Three main species of schistosomes infect human beings, Schistosoma haematobium, 

Schistosoma mansoni, and Schistosoma japonicum. S haematobium and S mansoni both 

occur in Africa and the Middle East, whereas only S mansoni is present in the Americas. S 

japonicum is localised to Asia, primarily the Philippines and China. Three more locally 

distributed species also cause human disease: Schistosoma mekongi, in the Mekong River 

basin, and Schistosoma guineensis and Schistosoma intercalatum in west and central Africa 

(figure 2). Each species has a specific range of suitable snail hosts, so their distribution is 

defined by their host snails’ habitat range. S mansoni and S haematobium need certain 

species of aquatic freshwater Biomphalaria and Bulinus snails, respectively. S japonicum 

uses amphibious freshwater Oncomelania spp snails as its intermediate host.

Schistosomes live an average of 3–10 years, but in some cases as long as 40 years, in their 

human hosts.6,7 Adult male and female worms live much of this time in copula, the slender 

female fitted into the gynaecophoric canal of the male, where she produces eggs and he 

fertilises them (appendix). Adult worms digest erythrocytes and although most of their 

energy is obtained by glucose metabolism,8,9 egg production is dependent on fatty acid 

oxidation10—both glucose and fatty acids being derived from the host. They live within 

either the perivesicular (S haematobium) or mesenteric (S mansoni, S japonicum, and others) 

venules. Schistosomes have no anus and cannot excrete waste products, so they regurgitate 

waste into the bloodstream. Some of these expelled products are useful for blood-based and 

urine-based diagnostic assays. S japonicum and S mekongi are zoonoses that also infect a 

wide range of mammalian hosts, including dogs, pigs, and cattle, which greatly complicates 

control and elimination efforts. Although S mansoni can infect rodents and non-human 

primates, human beings are thought to be its predominant mammalian reservoir. 

Understanding the schistosome lifecycle (figure 1) and the parasite's movement between 

intermediate (snail) and definitive (mammalian) hosts is fundamental to the control and 
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elimination of human schistosomiasis. Environmental changes can either increase11 or 

decrease12 transmission. Changes in snail habitat and predators are crucial determinants of 

transmission, and prepatent periods can affect the efficacy of treatment regimens.13 

Effective treatment of people (such that their excreta do not contain eggs), the prevention of 

sewage contamination of freshwater, the elimination of intermediate host snails, and the 

prevention of human contact with water containing infected snails can help to prevent 

transmission.

Although still in its infancy, studies of schistosome genomics will prove crucial for 

identification of candidates for drug targets and prophylactic vaccines.14 Schistosome 

populations are very genetically heterogeneous15,16 and genomic characterisation of human 

schistosomes can be used to establish epidemiological patterns of transmission, including 

insights into interspecies hybridisation among some schistosome species. For example, in 

areas with high transmission of both S haematobium and the S bovis parasites of cattle, 

bidirectional introgressive hybridisation occurs, yielding schistosomes of mixed heritage in 

people and snails.17 The implications of these findings are unclear for human disease, but 

these populations of hybrid schistosomes could prove problematic if they can replace 

existing species and parasite strains or extend intermediate host ranges.

Epidemiology

In regions endemic for schistosomiasis the most prevalent form of the disease is chronic 

schistosomiasis, resulting from repeated exposure to infectious cercariae. In such settings, a 

child's initial infection often occurs by age 2 years with the burden of infection increasing in 

intensity during the next 10 years as new worms colonise the child's body. Typically, the 

highest prevalence and intensities of infection occur in young adolescents (figure 3), after 

which both intensity and prevalence of infection generally decrease in adulthood. However, 

high prevalence can persist among subpopulations of adults who have frequent contact with 

water during their daily activities—eg, laundry, bathing, fishing, washing cars. In endemic 

regions, serosurveys show that almost every long-term resident becomes infected with 

schistosomes at some point in their life. In regions with typical transmission patterns, 60–

80% of school-age children and 20–40% of adults can remain actively infected.

The frequency of schistosome infections among infants and young children is being 

increasingly recognised.20 This situation was overlooked, partly, because of an emphasis on 

school-aged children, the low parasite egg output at this age, and the low sensitivity of 

standard diagnostics. Early childhood infection undoubtedly has a substantial role in host 

immunomodulation and the establishment of chronic antischistosome-egg inflammation that 

contributes to pathological effects in endemic paediatric populations.21

Pathogenesis and morbidity

All evidence suggests that schistosome eggs, and not adult worms, induce the morbidity 

caused by schistosome infections.22 Many eggs are not excreted and become permanently 

lodged in the intestines or liver (for S mansoni, S japonicum, and S mekongi) or in the 

bladder and urogenital system (for S haematobium). There, the eggs induce a granulomatous 

host immune response largely characterised by lymphocytes (which mainly produce T-
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helper-2 cytokines; eg, interleukins 4, 5, and 13), eosinophils, and, alternatively, activated 

macrophages (figure 4).23,24 These granulomas contain egg proteolytic enzymes to prevent 

tissue necrosis, but the process of granuloma formation induces chronic inflammation that 

leads to the disease manifestations of schistosomiasis.25

Acute schistosomiasis occurs most often in travellers or immigrants to schistosome-endemic 

regions who are exposed to schistosome antigens for the first time at an older age than usual. 

It occurs weeks to months after infection, as a consequence of worm maturation, egg 

production, release of egg antigen, and the host's florid granulomatous and immune complex 

responses. Acute schistosomiasis is sometimes referred to as Katayama syndrome and the 

typical clinical presentation is a sudden onset of fever, malaise, myalgia, headache, 

eosinophilia, fatigue, and abdominal pain lasting 2–10 weeks. This aspect of schistosomiasis 

has been reviewed in detail.26 The limited presentation of this syndrome in residents of 

endemic regions is probably a result of in-utero priming of T-lymphocyte and B-lymphocyte 

responses of babies born to mothers with helminthic infections.27,28

Over time, the granulomatous response to eggs is downregulated through several 

mechanisms in most individuals, leading to progression to the chronic intestinal form of the 

disease for S mansoni, S japonicum, and S mekongi. This form of the disease presents as 

non-specific intermittent abdominal pain, diarrhoea, and rectal bleeding, with the frequency 

of symptoms often related to the intensity of infection.29 Such gastrointestinal features are 

often focal with isolated mucosal hyperplasia, pseudopolyposis, and polyposis interspersed 

with normal bowel (appendix).30 Some people with intestinal schistosomiasis only poorly 

immunoregulate their response to parasite egg antigens31 and consequently develop 

extensive fibrosis and subsequent hepatosplenic disease with periportal fibrosis.32 Patients 

with periportal fibrosis—also called Symmer's pipe-stem fibrosis—retain hepatocellular 

function,33 differentiating the disease from cirrhosis and other liver diseases. Clinical 

features include upper abdominal discomfort with palpable nodular and hard hepatomegaly, 

often with splenomegaly. Ascites and haematemesis from oesophageal varices as a 

complication of portal hypertension can rapidly lead to death.34 Substantial pulmonary 

hypertension caused by granulomatous pulmonary arteritis can also occur in patients with 

advanced hepatic fibrosis disease.35 The time from initial infection to advanced fibrosis is 

usually 5–15 years.36 However, periportal fibrosis can occur in children as young as 6 

years,37 showing the need for screening and treatment of preschool children.20

By contrast, the defining symptom for urogenital schistosomiasis (S haematobium) is 

haematuria, often presenting with urinary frequency, burning micturition, and suprapubic 

discomfort. In endemic regions, haematuria is so widespread that it is thought a natural sign 

of puberty for boys, and is confused with menses in girls.18 As with severe intestinal 

schistosomiasis, severe urogenital schistosomiasis results from poor immunoregulation of 

antischistosome-egg responses,38 leading to chronic fibrosis of the urinary tract presenting 

as obstructive uropathy (hydroureter and hydronephrosis39), which—along with resulting 

bacterial superinfection and renal dysfunction—can have lethal consequences. Squamous-

cell carcinoma of the bladder is also strongly associated with S haematobium infection.40 

This tumour is often multifocal, and in regions endemic for S haematobium, occurs at a 

younger age than do transitional-cell bladder carcinomas.
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Female genital schistosomiasis caused by S haematobium strongly affects women's 

reproductive health.41 Eggs in the vesical plexus migrate to the genital tract causing 

inflammatory lesions in the ovaries, fallopian tubes, cervix, vagina, and vulva. Lower genital 

tract sandy patches are pathognomonic for female genital schistosomiasis and are associated 

with neovascularisation and friable mucosa that can result in contact bleeding 

(appendix).41,42 Female genital schistosomiasis causes pain and has been associated with 

stress incontinence, infertility, and increased risk of abortion. Unfortunately, treatment 

might not resolve these advanced forms of genital tract damage and there is growing 

evidence that such lesions can increase transmission of HIV.43 For men, urogenital 

schistosomiasis can present with haematospermia, orchitis, prostatitis, dyspareunia, and 

oligospermia. These conditions resolve more readily after antischistosomal treatment than 

do those of female genital schistosomiasis.44,45 S mansoni and S japonicum rarely affect the 

genital tract.41

All Schistosoma species cause non-specific but disabling systemic morbidities including 

anaemia, malnutrition, and impaired childhood development,46 as a result of the effect of 

continued inflammation on normal growth, iron metabolism, physical fitness, and cognitive 

function.47–49 Most anaemia in patients with schistosomiasis is anaemia of inflammation, 

linked with blood loss (and high parasitic loads), that contributes to total-body iron 

deficiency.21,50,51 Anaemia of inflammation is caused by iron trapping within the body 

mediated by the hepatic hormone hepcidin, the release of which is stimulated by infection-

related production of the pro-inflammatory cytokine interleukin 6.52 As a downstream 

consequence of chronic anaemia, decreased aerobic capacity negatively affects physical 

work output in regions endemic for schistosomes.49,53 Reduced intellectual function scores 

and acute and chronic undernutrition in children are also significantly associated with 

schistosomiasis.47,48,54 Fortunately, these deficits lessen with treatment,54,55 although the 

effective window for preventive treatment is probably short.56,57

Ectopic deposition of schistosoma eggs can lead to unexpected morbidities. The most 

common involves migration of parasite or eggs to the CNS, with symptoms of spinal 

compression or encephalopathy. Cerebral schistosomiasis occurs most commonly during S 

japonicum infections. Clinical presentation includes symptoms of meningoencephalitis with 

pyrexia, headache, vomiting, blurred vision, and altered sensorium or Jacksonian epilepsy. 

Spinal cord involvement—more common with acute schistosomiasis—can present as acute 

transverse myelitis or subacute myeloradiculopathy, and can result in paralysis or lumbar 

and leg pain, with muscle weakness, sensory loss, and bladder incontinence.58

Comorbidities

Schistosomiasis often occurs alongside other infectious diseases, with a wide range of co-

infecting organisms. In addition to its direct morbidities, schistosomiasis can affect 

immunological and physiological relations between the host and co-infecting pathogens. 

Thus, better control of schistosomiasis could provide adjunctive benefits in such areas. The 

most compelling example might be the effect of schistosomiasis on susceptibility to HIV 

infection. Among women with female genital schistosomiasis, the inflammation, friability, 

and neovascularisation of the genital epithelial tissue can lead to a compromised physical 
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barrier to exposure to HIV through sexual activity. In population-based studies, female 

genital schistosomiasis has been associated with a three to four times increased risk of HIV 

infection.43,59,60 This effect is compounded by increased concentrations of CD4-positive 

cells in semen of men with high intensity S haematobium infection.61 Furthermore, during 

active schistosomiasis, CD4-positive cells express increased concentrations of HIV 

coreceptors, providing more targets for HIV infection.62 HIV-positive people who have 

delayed treatment for schistosomiasis have a more rapid increase of viral load and CD4 T-

cell loss than do those treated early for schistosomiasis.63 However, a randomised trial 

detected no significant effect of schistosome or other helminth infection on the length of 

time before patients with HIV became eligible for antiretroviral therapy.64 So far no studies 

have been done of paediatric HIV and schistosomiasis co-infection, in which perinatally 

acquired HIV infection would normally precede schistosomiasis.

Schistosomiasis could also alter immune responses to co-infecting pathogens, allergens, or 

vaccines. The immunoregulatory responses during schistosome infection could 

downregulate T-helper-1-type immune response associated with control of viral or 

protozoan infections, or interfere with immunisation. In one of the most studied co-

infections, schistosomiasis seems to modulate malaria but studies have yielded conflicting 

results. In some,65–67 malaria prevalence, anaemia, and pathological effects are higher in 

children with schistosomiasis than in children without schistosomiasis, whereas antimalarial 

immune responses are diminished. However, other studies report no, or even a protective 

effect of schistosome infection on malaria, accompanied by increased immune 

responses.68,69 Schistosome and malaria-related antigens can cross-react to a degree,70 

further complicating the situation. The particular schistosome species involved could have 

an important effect—perhaps S haematobium promotes protective responses whereas S 

mansoni increases susceptibility to malaria.65,69 This difference could be a result of whether 

malaria sporozoites pass through a liver micro-environment immunologically affected by S 

mansoni egg granulomas.

Diagnosis

The diagnostic standard for active schistosomiasis is viable eggs in urine (S haematobium), 

faeces (S japonicum, S mansoni), or tissue biopsies. At present, the presence of infecting 

schistosomes cannot be ruled out definitively because of the low sensitivity of standard urine 

and faecal examinations.71 Microscopic examination of polycarbonate filters for eggs in the 

urine, urine dipstick assays for heme,72,73 or the Kato-Katz faecal examination for 

schistosome eggs74 are recommended by WHO for mapping and field-based control of 

schistosomiasis. Molecular techniques to detect schistosome DNA in faecal specimens have 

greater sensitivity than does microscopy75 but they still suffer from sampling limitations 

because of the irregular distribution of eggs in the excreta. DNA detection for serum or urine 

is also being assessed.76,77 Serological assays have proven useful clinically78 for diagnosis 

by detection of antibodies against schistosomal antigens, especially for symptomatic 

travellers, but for people in regions endemic for schistosomiasis, serology is unable to 

discriminate between active infection and past exposure. Detection of circulating 

schistosomal antigen overcomes this difficulty, and a point-of-contact circulating cathodic 

antigen assay is commercially available (Rapid Medical Diagnostics, Pretoria, South 
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Africa). This lateral flow cassette assay works on urine and seems to be more sensitive than 

the Kato-Katz assay for mapping of S mansoni-endemic regions.79 Its use permits on-site 

mapping of S mansoni without stool collections.

Better diagnostic tests for schistosomiasis are still needed—both in the field and in the clinic

—and new technologies are being studied. For example, PET scans80 have been used 

experimentally to detect adult parasites in vivo and microfluidics now offer the potential to 

miniaturise both antibody and parasite antigen detection assays.81 In addition to the 

importance of diagnostic improvements for clinical diagnoses, such advances will also be 

essential for drug development, elimination programmes, and vaccine assessment, in which 

infection must be accurately monitored over time. For the present, the absence of a true gold 

standard for quantitative correlations to actual worm burden remains a significant challenge.

An important public health aspect of monitoring control and elimination programmes is 

detection of schistosome infections in the snail host. Snail xenodiagnosis enables the 

identification of environmental contamination during control and elimination programmes, 

whether through the use of so-called sentinel snails82 or wild caught snails. Fully patent 

snail infections are detected by inducing cercarial shedding and prepatent infections can be 

identified by histological examination of snail tissues and by molecular parasitological 

techniques such as PCR83 or loop-mediated isothermal amplification assays.84 Comparisons 

of molecular assays and shedding assays show that most schistosome-infected snails do not 

progress to patency.85

Treatment

Praziquantel is the drug of choice for schistosomiasis. It is effective against all Schistosoma 

species, but its mechanism of action is not clearly understood. For full efficacy it needs an 

effective host antibody response.86,87 Praziquantel acts against adult schistosome worms, 

but has poor activity against immature schistosome larvae. A standard dose of 40 mg/kg is 

thought effective for treatment of S haematobium and S mansoni and can safely be used in 

pregnancy after the first trimester. For S japonicum and S mekongi, the recommended dose 

is 60 mg/kg. A dose pole is used in the field to determine the number of tablets to use.88 For 

preschool children (generally, younger than age 5 years), a new dose pole extends below 94 

cm.89 However, cure rates among preschool children are low,90 perhaps because of incorrect 

extrapolation of adult dosing. Praziquantel tablets are large and taste bitter; and no readily 

available paediatric formulation exists.91 Therefore, treatment of young children involves 

crushing tablets in carriers such as orange juice. Common side-effects of praziquantel 

include abdominal pain, headache, dizziness, and transient passage of blood in stool. High-

burden infections correlate with high risk of side-effects, which peak about 2–4 h after drug 

intake and are self-limited.

Artemisinin derivatives (such as artemether and artesunate) were developed as antimalarial 

drugs but also kill immature larval forms of developing schistosomes.92 However, because 

the time of cercarial exposure is normally unknown, the drug's use is limited, except after 

common point-source exposures. In areas of continuous transmission, artemisinin 

derivatives could be used in conjunction with praziquantel to improve overall cure rates and 

infection control. Meta-analysis has shown two-times higher cure rates after treatment with a 
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combination of praziquantel and artemisinin compared with praziquantel monotherapy.93 

However, research of dosing, formulation, and drug interactions is needed before 

combination treatments will become standard. Also, the potential for induction of 

artemisinin-resistant malaria parasites should be considered before standard use of such 

combinations in regions endemic for malaria.

Oxamniquine—a tetrahydroquinolone compound—is effective against only S mansoni and 

is no longer readily available.94 As with praziquantel, it has few side-effects, although some 

reports of heightened seizure activity in patients with underlying epilepsy have been 

noted.95

Even after extensive use in many endemic countries, no clear evidence of praziquantel 

resistance exists. However, such resistance can be induced experimentally,96 thus the threat 

of emerging resistance caused by mass monotherapy remains. Because its mechanism of 

action is unknown, no test for praziquantel resistance exists except clinical failure. Although 

praziquantel-tolerant schistosomes have been reported,96,97 such strains have not become 

established in field settings. Determination of clinical resistance is confounded by 

praziquantel's inactivity on immature worms—eg, in areas of constant reinfection, 

praziquantel might effectively kill adult worms but immature worms would then develop 

and present as adults, implying drug failure.97 In such settings, repeated praziquantel 

treatment 3–6 weeks apart kills initially resistant juvenile worms and improves drug 

treatment.98

Immunology

Immune responses during schistosomiasis can be thought of in terms of three topics: 

immunopathogenesis, resistance to reinfection, and immunodiagnostics. All three are 

affected by the development and establishment of chronic infection in the presence of 

chronic antigenic exposure. Faced with multiple antibody and cellular immune responses, 

adult schistosome worms persist in the bloodstream for decades, seemingly impervious to 

attack from immune effector mechanisms. This immune evasion by adult schistosomes is a 

result of several mechanisms99 and leads to a stalemate: the worms thrive and the host 

survives. Indeed, morbidity seems to be associated with immunopathology against only eggs 

that remain trapped in tissues. That immune responses are essential for effective 

treatment86,87,100 and that many anti-worm and anti-egg antibody responses are detected by 

serodiagnostic assays shows that adult worm antigens are readily detected by the host 

immune system, although intact worms effectively evade immune attack.

The immunopathology and immunoregulation associated with morbidity of schistosomiasis 

has been studied extensively. However, the immune mechanisms related to resistance, to 

reinfection, or in response to candidate vaccines are much less defined. Although adult 

worms are refractory to immune attack, immature, developing worms (skin-stage and lung-

stage schistosomulae) are the probable targets of protective immunity.101 Whether a 

protective resistance to reinfection exists is subject to ongoing debate,102 but several lines of 

evidence suggest that such resistance does develop, albeit slowly.103–105 The feasibility of 

inducing protective immunity has been shown through immunisation of various 

experimental hosts with irradiated cercariae.106,107 Data from endemic populations 
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(appendix) suggest that age-associated decreases in infection result from development of 

antiparasite immunity, rather than reduced contact with water.108

Although the responsible antigens and host immune responses are not fully defined, 

resistance to reinfection is consistently associated with IgE antibodies against worm 

antigens,103 low concentrations of IgG4 antibodies to worm antigens, and high blood 

eosinophilia.104 Resistance to reinfection is partial, which means that sterile immunity either 

does not develop or is rare. Studies of resistance to reinfection in human beings suggest that 

worm death, whether natural or after treatment, leads to release of immunogens that 

stimulate these protective responses, which then react with antigens expressed by 

susceptible incoming, migrating schistosomulae.103 Treatment of schistosomiasis increases 

common correlates of resistance: eosinophilia, parasite-specific IgE, and interleukin 5 

production in response to worm antigens109–111 and repeated treatment and retreatment of 

reinfections can lead to longer intervals before reinfection, even accounting for similar 

exposure patterns in highly exposed patients.105 Nevertheless, despite substantial effort and 

successful vaccination of experimental and reservoir hosts,112 no clinical trials for a human 

vaccine to schistosomiasis have been successful.

Burden of disease

Official estimates113 of the prevalence of Schistosoma infection were based on insensitive 

egg-detection techniques, which substantially under-represent active infection.114–116 

Schistosomiasis initiated by infection in early life persists into adulthood, even after 

infection terminates.117 Thus, although more than 230 million people are thought to be 

actively infected with schistosomes,1 a similar number are in a post-infection stage but 

continue to have residual morbidity. As a result, the number of people with schistosomiasis 

(ie, infection-related disease) could be closer to 440 million.

Classic descriptions of schistosomiasis-related morbidity focus on the pathologies unique to 

schistosome infection: periportal fibrosis for intestinal schistosomiasis and bladder 

deformity and hydronephrosis for urogenital schistosomiasis. In fact, these morbidities are 

much less common (5–10% of cases) than the less obvious, but disabling complications of 

anaemia, growth stunting, cognitive impairment, and decreased aerobic capacity (figure 5). 

These morbidities are systemic, associated with continuous inflammation during the first 

decades of life as a child has multiple, recurrent schistosome infections.56,117–120 These 

disabling complications are particularly relevant in low-income countries, where they 

contribute to impaired physical performance and limited educational attainment—

disabilities that become irreversible if infection cannot be prevented or suppressed 

throughout childhood. Schistosomiasis does not occur in isolation. It is a disease of poverty 

that often occurs where other parasites are prevalent and food insecurity is common. Thus, 

fully determining the global attributable fraction of schistosomiasis toward these morbidities 

is difficult. However, schistosomiasis alone is clearly a sufficient cause of these morbidities 

in many endemic locations.121
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Mapping and surveillance

Implementation of population-based control programmes by WHO guidelines requires 

prevalence estimates, to decide where to use school-based versus community-based delivery 

of praziquantel. A crucial consideration for the effective integration of preventive 

chemotherapy for neglected tropical diseases is whether schistosoma infection overlaps with 

filariasis, onchocerciasis, intestinal worm infections, and trachoma,122 which are all targeted 

for control through preventive chemotherapy. Climate measures and digital topography 

linked with data from past population-based surveys can broadly predict where schistosome 

transmission is possible. But schistosome prevalence can be focal, resolving into a 

patchwork mosaic of high-prevalence, medium-prevalence, and low-prevalence villages 

across a permissive landscape.123,124 Therefore, random cluster sampling across district-

level administrative units can substantially overestimate or underestimate infection risk in 

individual communities and schools.125–127 Randomised subsampling could be improved by 

testing paired locations at various distances apart to estimate the controlling distance factor 

for autocorrelation of infection prevalence within a given region.128 However, because 

prevalence can vary significantly over 2–5 km, it might be best to briefly survey all intended 

treatment locations (implementation units) with rapid sampling techniques (limited to 15–50 

people per site). For initial allocation of S haematobium treatment, the WHO's Red Urine 

Group consortium showed that a prevalence of visible (gross) haematuria of 10% or greater 

effectively identifies high-prevalence communities.129 However, for S mansoni infection, 

symptom scores or occult blood testing—although indicative of severe disease130,131—are 

not sufficient to map levels of infection for preventive chemotherapy. Instead, Lot-Quality 

Assurance or Multiple Category Lot-Quality Assurance approaches are used for limited 

testing of a single stool to classify communities as having high or low prevalence.132 Point-

of-care urine assays might supplant stool testing for this crucial mapping and decision 

process.79 A shortcoming of rapid testing strategies is that test sensitivity will probably fall 

as programmes succeed and prevalence and intensity falls. More sensitive testing of more 

residents will be needed to define regions that still have high transmission and to establish if 

elimination has been achieved. For S haematobium infection, dipstick diagnosis of 

microscopic haematuria still seems to be adequate to detect low-level infection. However, 

for S mansoni and S japonicum new elimination diagnostic tests are needed.

Control and elimination

It is an exciting time for control and elimination of schistosomiasis. In 1984, the WHO 

endorsed a strategy to control morbidity caused by schistosomiasis through preventive 

chemotherapy with praziquantel.133 Because of its excellent tolerability and generally good 

ability to either cure or drastically reduce egg output (70–90%),134,135 praziquantel can be 

distributed yearly (or in alternate years) by moderately trained school teachers or community 

health workers to obtain sufficient coverage to control morbidity in children, even despite 

the possibility of reinfection, resulting in prevention of severe hepatosplenic or urogenital 

disease.73,115 WHO has recommended the inclusion of preschool children in preventive 

chemotherapy efforts.20,136

In 2012—through World Health Assembly Resolution 65.19—the WHO recommended that 

countries, if possible, aim beyond control of morbidity toward elimination of 
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schistosomiasis. This change of policy was a bold and important step. It is partly predicated 

on the pledge by Merck Serono (Geneva, Switzerland) to donate up to 250 million tablets of 

praziquantel per year137 and the demonstration by the Schistosomiasis Control Initiative, 

that nationwide rollout of preventive chemotherapy with praziquantel can be accomplished. 

The decision by a country to move towards elimination should not be made lightly. It must 

be based on years of extensive control and reliable prevalence mapping that justifies the 

decision. Countries will need diagnostic tests suitable for use in the field, suitable survey 

sampling schemes, and the human capacity to implement the necessary interventions. 

Meeting these requirements needs a strong platform of government commitment over a 

substantial period. After elimination, the programme must provide an adequately designed 

surveillance scheme based on sound epidemiological and statistical techniques and 

improved diagnostic instruments. Aside from drug donations, many countries will need 

international and binational assistance for implementation of elimination interventions.

Because preventive chemotherapy alone will not eliminate schistosomiasis from most 

regions, additional control measures should be integrated into national and regional 

programmes.138 For the first 60 years of large-scale efforts to control schistosomiasis, snail 

control was the primary method used to prevent infection because no drugs were suitable for 

mass distribution. Although chemicals, habitat change, predators, and biological competitors 

have been used to reduce snail populations, efforts at present primarily use the molluscicide 

niclosamide, which kills snails at low concentrations and is non-toxic to people. However, it 

is toxic to some freshwater fish and amphibians.139,140 Niclosamide is a licensed pesticide 

in the USA, and is widely used for control of snails141,142 and sea lampreys.143 When used 

properly in suitable habitats, it has been an important contributor to schistosomiasis 

elimination campaigns.144–146

Behavioural modification is a possible, but challenging, approach to management of any 

health problem. However, with proper community involvement, it could be useful for 

reduction of both exposure of people to schistosome-containing water and contamination of 

snail habitat by human excreta containing schistosome eggs. Behavioural modification—

without provision of feasible alternatives—is destined to fail, but in conjunction with 

improvements in water and sanitation, it could prove successful. Provision of schistosome-

safe water for washing, bathing, and recreation is effective but expensive.147

Ongoing studies of the Schistosomiasis Consortium for Operational Research and 

Evaluation in five African countries will help determine the regimens needed to gain and 

sustain control of morbidity. In Zanzibar, studies are underway to understand the thresholds 

and combined activities needed for elimination.148 Widespread elimination will almost 

certainly need integrated use of many or all the methods that can be applied: preventive 

chemotherapy, snail control, behavioural modification, water and sanitation improvements, 

and perhaps eventually a prophylactic or transmission-blocking vaccine.

The coordination and logistics needed at national, regional, and continental scales to reach 

sustained control of morbidity, then elimination, are daunting. Nevertheless, now is the time 

to move towards this goal. World Health Assembly resolution 65.21 calls on all countries to 

intensify interventions to control schistosomiasis and to strengthen surveillance of 
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schistosomiasis transmission. It also recommends that endemic countries embark on 

elimination programmes and develop means to document their progress. The resolution calls 

on WHO to report on progress towards elimination of schistosomiasis to the Executive 

Board and the World Health Assembly every 3 years.149 The ultimate vision is a world free 

of schistosomiasis, with the intermediate goals of controlling morbidity caused by 

schistosomiasis by 2020, eliminating schistosomiasis as a public health problem by 2025, 

and interrupting transmission of schistosomiasis in most regions and in selected countries in 

Africa by 2025.150

Conclusion

Schistosomiasis is an ancient human disease with effects worldwide, particularly in the 

poorest communities. Effective early treatment is possible, thereby preventing the 

substantial immune-mediated effects of Schistosoma infection on human health. New 

diagnostic tests and new approaches to treatment implementation are aimed at local, then 

regional elimination, thus changing the public health agenda from curative approaches to a 

truly preventive strategy.
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Search strategy and selection criteria

We did a systematic search of PubMed, Medline, Google Scholar, and Embase for 

relevant studies, with the wildcard search terms “schistosome*”, “bilharz*”, and related 

subject headings for reports published between Jan 1, 2006 and Dec 31, 2013. Selection 

of studies was not limited by language. Reports were independently reviewed for 

inclusion by at least two authors. Older references were included on the basis of their 

importance.
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Figure 1. Lifecycles of Schistosoma mansoni, Schistosoma haematobium, and Schistosoma 
japonicum
(A) Paired adult worms (larger male enfolding slender female). (B) Eggs (left to right, S 

haematobium, S mansoni, S japonicum). (C) Ciliated miracidium. (D) Intermediate host 

snails (left to right, Oncomelania, Biomphalaria, Bulinus). (E) Cercariae.
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Figure 2. Global distribution of countries where human schistosomiasis is transmitted
Adapted from Gryseels and colleagues.5
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Figure 3. Age-prevalence and age-intensity of infection curves for Schistosoma haematobium (A) 
and Schistosoma mansoni (B)
Data from King and colleagues18 and DeStigter and colleagues.19
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Figure 4. Schistosoma mansoni egg-induced granulomas in the liver of an infected mouse
Eggs are roughly 120–180 μm long, 45–70 μm wide.
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Figure 5. Effect of schistosomiasis on aerobic capacity in children in Kenya and Canada
Data taken from Bustinduy and colleagues.49
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