Saudi Journal of Biological Sciences 30 (2023) 103685

Saudi Journal of Biological Sciences

journal homepage: www.sciencedirect.com

Review A comprehensive review of cystic fibrosis in Africa and Asia

Khadijat Abubakar Bobbo^{a,b,e}, Umar Ahmad^{c,d}, De-Ming Chau^{e,f}, Norshariza Nordin^{e,f}, Syahril Abdullah^{a,e,f,*}

^a UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Selangor, Malaysia

^b Department of Human Anatomy College of Medical Sciences, Faculty of Medicine, Gombe State University, 760253 Gombe State, Nigeria

^c Molecular Genetics Informatics, Department of Anatomy, Faculty of Basic Medical Sciences, Bauchi State University, 751105 Gadau, Nigeria

^d Institute of Pathogen Genomics, Africa Centres for Disease Control and Prevention (Africa CDC), African Union Commission, P.O.Box 3243, Addis Ababa, Ethiopia

^e Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Selangor, Malaysia

^fGenetics & Regenerative Medicine Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Selangor, Malaysia

ARTICLE INFO

Article history: Received 24 October 2022 Revised 30 April 2023 Accepted 15 May 2023 Available online 19 May 2023

Keywords: Cystic Fibrosis Caucasian Africa Asia

ABSTRACT

Cystic fibrosis (CF) was earlier thought to be a disease prevalent in the West among Caucasians. However, quite a number of recent studies have uncovered CF cases outside of this region, and reported hundreds of unique and novel variant forms of *CFTR*. Here, we discuss the evidence of CF in parts of the world earlier considered to be rare; Africa, and Asia. This review also highlighted the *CFTR* mutation variations and new mutations discovered in these regions. This discovery implies that the CF data from these regions were earlier underestimated. The inadequate awareness of the disease in these regions might have contributed towards the poor diagnostic facilities, under-diagnosis or/and under-reporting, and the lack of CF associated health policies. Overall, these regions have a high rate of infant, childhood and early adulthood mortality due to CF. Therefore, there is a need for a thorough investigation of CF prevalence and to identify unique and novel variant mutations within these regions in order to formulate intervention plans, create awareness, develop mutation specific screening kits and therapies to keep CF mortality at bay. © 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction	
2. Cystic Fibrosis in Africa	
3. Cystic Fibrosis in Asia	3
3.1. Cystic Fibrosis in Western Asia (The Middle East)	
3.2. Cystic Fibrosis in East, South and South-East Asia	5
3.3. Cystic Fibrosis in South Asia	5
3.4. Cystic Fibrosis in East Asia	
3.5. Cystic Fibrosis in South-East Asia	
3.6. Cystic Fibrosis in Central Asia and other Asian countries	
4. Prospect	
5. Conclusion	
Authors Contributions	
Funding	
Declaration of Competing Interest	
References	

* Corresponding author at: UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Selangor, Malaysia.

E-mail addresses: khadijantii@gmail.com (K. Abubakar Bobbo), umarahmad@basug.edu.ng (U. Ahmad), deming@upm.edu.my (D.-M. Chau), shariza@upm.edu. my (N. Nordin), syahril@upm.edu.my (S. Abdullah).

https://doi.org/10.1016/j.sjbs.2023.103685

1. Introduction

Cystic Fibrosis (CF) was initially predominantly recorded within Caucasians of Northern and Western European ancestry (Fernald et al., 1990). Startlingly, recent studies revealed the possibility of more CF cases in regions earlier presumed to be rare. This includes Africa (De Boeck, 2020) and Asia (Banjar et al., 2021). According to CF registries in many of the European countries, it is evident that immigrants from both Africa and Asia have been diagnosed with CF especially in the UK, US, and France (Mekki et al., 2021). More studies have also reported CF cases in Africa and Asia, with some rare and novel mutational variants specific to some ethnic groups (Mathew et al., 2021).

Furthermore, recent studies from the non-Caucasian regions, especially the West Asia and some countries in North Africa that form the Middle East geopolitical zone (the Arab ethnicity), have reported incidence similar to the West (Banjar et al., 2021). This implies that CF might be underestimated in many parts of the world probably due to early Caucasian perception, poor diagnostic tools, lack of medical awareness, under-diagnosed or/and under-reporting (Stewart and Pepper, 2016), or probably due to the lack of CF associated health policies. These regions are presently facing similar challenges earlier recorded by the West from fifty years ago when more than 90% of infants with CF died from persistent diarrhoea and chronic malnutrition due to pancreatic failure before their second birthday (Mehta, G., Macek, M., Jr, Mehta, A., & European Registry Working Group, 2010).

Cystic Fibrosis is grouped into seven classes, denoted as class I– VII, depending on the cellular phenotype and prognostic consequences. These classes are based on either the molecular protein translation, cellular processing, or gating of the CFTR (Wei et al., 2020). Many CFTR variants go unclassified as more unique and novel variants are continuously identified around the globe (Maiuri et al., 2017). Understanding and designing therapies for specific defects have benefited thus far from this classification (Cooney et al., 2018). Class I–III and VII variants typically cause the severe type form of CF, whereas classes IV–VI mutations cause the milder form of CF (Marson et al., 2016).

This review discusses the general outlook of the CF incidences and novel *CFTR* mutations identified from parts of the world earlier considered to be rare; this includes Africa and Asia. We therefore emphasize the need for a thorough investigation of CF prevalence, and identification of unique and novel mutations within these regions. Optimistically, this should assist in the development of intervention plans, and mutation-specific diagnostic kits and drug/therapy.

2. Cystic Fibrosis in Africa

Evidence of CF in Africa dated back to the late 1970s in both the white and black population (Super, 1975), with the European c.1 521_1523delCTT(p.Phe508del) variant diagnosed as the most common (more than 80%) among the white population than the coloured CF cohort (Herbert and Retief, 1992). Several other CF variants were identified among native African in diaspora, African-Americans, and African-Europeans (Stewart and Pepper, 2016). According to the newborn screening (NBS) cohort in France, the incidence of CF among people of African descent increased from 1% in 2000 to 10% in 2019, with the most notable variant identified was the c.2988 + 1G>A (3120 + 1G>A), which was most prevalent in patients of Congolese origin (Mayer Lacrosniere et al., 2021). The variant c.3197G>A (p.Arg1066His), c.3607A>G (p. Ile1203Val), c.273 + 4A>G (p.Gly91 =), c.579 + 1G >T (711 + 1G>A), c.C233dup, c.1657C >T (p.Arg553X), and c.54-5940 _273 + 10250del21kb (p.Ser18ArgfsX16; CFTRdel19-21) were other variants found in this cohort in patients with Congo, Sierra Leone, Cameroon, Senegal, Côte d'Ivoire and Mali ancestry respectively. Another study from France of a CF cohort of patients with diverse ethnic backgrounds and racial origins has identified novel variants, such as c.2991G>C (p.Leu997Phe) North Africa and c.4230C>A (p.Cys1410) from Sub-Saharan Africa. The c.2290C >T (p.Arg764) variant was also discovered in patients with Sub-Saharan African ancestry. This novel variant was recently discovered in an African-American patient (Mayer Lacrosniere et al., 2021). Although the majority of countries in Sub-Saharan Africa have not reported any incidents of CF to date, this suggests the potential existence of disease in that region.

Presently, the Northern (Morocco, Algeria, Tunisia, Libya, Egypt & Sudan) and Southern (Namibia, Zimbabwe, & South Africa) sections of Africa account for the majority of the continent's CF statistics (Stewart and Pepper, 2016). Preliminary statistics are currently available from three countries in Western Africa (Senegal, Ghana, and Cameroon) and one country in Eastern Africa (Rwanda) (Stewart and Pepper, 2016; Owusu et al., 2021). Historically, South Africa was the first country to report cases of CF in Africa, with white populations experiencing a higher incidence of the disease (70%) than coloured populations (0.7% Indians and 9.7% Blacks), and mixed-race populations (19%) (Zampoli et al., 2021). The c.1521_1523delCTT accounts for 63.1% all variants identified in South Africa, found at 58.1% homozygous and 32% compound heterozygous states. It was the most prevalent variant in the white population (76%) (Zampoli et al., 2021). The c.2988 + 1G>A (9.5%) variant was the second most common in the black population, presenting mostly (56.1-67.6%) in homozygous state (Zampoli et al., 2021; Van Rensburg et al., 2018). Furthermore, c.3140-26A>G (3272-26A>G) was found to be the second most common (3.98%) variant in the white South African population. Other variants discovered included c.1585-1G>A, c.2374C >T (p.Arg792X), c.3731G>A (p.Gly1244Glu), c.2051delA (p.Lys684SerfsX38), and c. 3064_3117delGTGATAGTGGCTTTTATTATGTTGAGAGCATATTTCCTC CAAACCTCACAGCAA (p.Val1022_Gln1039del) (Owusu et al., 2021; Zampoli et al., 2021). A novel large CFTR2,3(21 kb); c.54-1161c.1603del2875 (5.56%) was discovered in the black South African population (Van Rensburg et al., 2018). Several other variants were identified within this population, however at low frequency. They are listed in Table 2.

Although the coverage CF frequency in the Northern part of Africa was not comprehensive, smaller scale studies were able to identify predominantly European variants including c.1521_1523delCTT, c.1624G >T and c.3909C>G alongside several unique/novel variants within this population (Loumi et al., 2008). In the late 1990s, a novel variant; c.422C>A (p.Ala141Asp) was identified in an Algerian patient in France (Gouyat et al., 1997). Using diagnostic sequencing, more novel and distinctive variations were identified in the Algerian population. These variants were notably diagnosed at significant high frequency in this population. They are c.2562T>C (p.Thr854Thr), c.1408A>G (p.Met470Val), c.4521G>A, and c.869 + 11C >T at 27.7%, 15.2%, 12.5% and 9.7% respectively. Other unique variants diagnosed in Algeria include c.2991G>C (p.Leu997Phe), c.743 + 40A>G (875 + 40A>G), c.1210-12T (Mathew et al., 2021), c.1584G>A, and c.3870A>G (p. Pro1290 =). Several additional common variants were also identified, most frequent include the c.1521_1523delCTT(16.7%), c.3909C>G (8.3%), c.579 + 1G >T(8.3%), and 2183AA>G at 4.2% frequency (Loumi et al., 2008).

Unlike Algeria, variants c.1521_1523delCTT (47.06-56%) and c.3310G >T (p.lu1104X) (16.18%) were the most frequent in Tunisia, alongside the common variants c.1624G >T, c.3846G>A, c.3909C>G, c.579 + 1G >T, and c.254G>A (Messaoud et al., 2005; Boussetta et al., 2018). Other variant such as c.2766del8, c.3497T>G (p.Phe1166Cys) and c.3128T>G (p.Leu1043Arg) were

exclusively found in a study of patients in Tunisia (Messaoud et al., 2005), while c.1993A >T (p.Thr665Ser) was initially exclusively identified amongst Tunisians but more recently identified in Egyptian patients (Messaoud et al., 2005; El-Seedy et al., 2017). Two more rare Tunisian specific variants identified were c.57G>A (p. Trp19X), reported in only two cases since 2013, and more recently the c.680T>G (p.Leu227Arg) (Sediki et al., 2016). Additionally, c.3607A>G, c.1679 + 5A>G (1811 + 5A>G), c.4136 + 2T>G (4268 + 2T>G) and c.3729delAinsTCT variants, were also identified among the Tunisians and the Middle Easterns. Morocco and Libya have reported only very few cases of CF from a 32 CFTR gene assay screening of random samples, identifying only variants c.1521_1523delCTT and c.1210-12T (Mathew et al., 2021) splicing variants (Ratbi et al., 2008). Earlier studies of Moroccan migrants in Europe were presented with c.1624G >T, c.1652G>A, c.3909C>G, and c.3846G>A variants (Estivill et al., 1997). Some of these variants were also identified in the Libvan population, with the most common were c.3310G >T (40% frequency), c.1521_1523delCTT (30%), c.1670delC (10%) and c.3909C>G (5%) (Fredj et al., 2011).

Although located in Africa, CF incidence in Egypt was mostly reported alongside the countries in West Asia constituting the Middle East geopolitician zone and also be due to ethnicity linkage. Unlike most countries in Africa, Egypt has established a CF centre at Cairo University and a registry since 2006. Since then, 27 mutations have been identified within the Egyptian population as of 2017 (Fathy et al., 2016). The most frequently identified variants were c.1521_1523delCTT (58%), 2183AA>G (10%), c.3870A>G and c.3484C >T (p.Arg1162X) at 6% each. Variants c.1364C>A, c.443T>C (p.Ile148Thr) and c.1408G>A were identified at 4% each (Sahami et al., 2014). Additionally, the c.1210-12T (Mathew et al., 2021) (28.6%) and c.3752G>A(p.Ser1251Asn) (3.6%) variants were also commonly identified in the Egyptians. Two novel mutations identified in the Egyptians were c.1766 + 3A>G(1898 + 3A>C)and c.1993A >T (Stewart and Pepper, 2016). In contrast, Sudan reported only 35 cases mainly recorded from the Northern part of Sudan (Hamouda et al., 2020), uniquely identifying c.1736A>G (p.Asp579Gly) and c.3304A >T (p.Arg1102X) mutations as the most common within the population (Stewart and Pepper, 2016).

Unfortunately, there are relatively non-existing CF reports from countries within the Central, Western and Eastern parts of Africa. However, there are few studies conducted in South Africa and Europe which reported cases of patients from these African regional origins. Variants identified in patients with Central African ancestry include c.2988 + 1G>A, c.3327C>A (p.Tyr1109Ter), c.273 + 1G>A, c.1521_1523delCTT and c.273 + 4A>G (p.Gly91 =) identified in Cameroonians (Stewart and Pepper, 2016; Mayer Lacrosniere et al., 2021), while variants c.3197G>A, c.399insT, c.2988 + 1G>A, c.287C>A (p.Ala96Glu), and c.933C>A (p.Phe311-Leu) were identified in the Congolese (Mayer Lacrosniere et al., 2021). Studies in South Africa have recorded CF in patients of Malawi, Zimbabwe, Mozambique (Owusu et al., 2021) and Botswana origins (Super, 1975). Novel variant (c.541161-c.164 + 1603 del2875) was identified in a Zimbabwean patient, alongside the common c.2988 + 1G>A (Stewart and Pepper, 2016). A number of variants were earlier identified in Rwandan patients, some of which are known variants as listed in Table 2. Additionally, novel variants were also identified; these include c.610G>A (p. Ala204Thr), V348M, T577T, c.3468 + 5G>A (3272-32T>C), c.*2G>A (4575 + 2G>A), and c.1176 + 30G>C (Ser212Ser) (Mutesa et al., 2009).

Countries in Sub-Saharan Africa lack the availability of sweat testing, which might be a major barrier in diagnosing CF in the region (Owusu et al., 2021). Nonetheless, there were evidences of CF in this region following diagnosis in patients of Sub-Saharan Africa descends in other countries. For instance, a study conducted in South Africa reported CF in a patient of West African descen-

dants of Ghana (Owusu et al., 2020). This finding led to CF screening in Ghana, which resulted in the discovery of positive CF cases with the identification of variants c.1364C>A (p.Ala455Glu), Exon 12d deletion, c.1397C>A or c.1397C>G (p.Ser466X) and c.1373G >T (p.Gly458Val) (Owusu et al., 2021). More CF variants were identified in patients of West African descent, including IVS2 + 28A>G, c.(2988 + 1_2989-1)_(3468 + 1_3469-1)del (Ex17a-Ex18del), c.4136 + 1G>A, 711 + 1G>A, and c.4230C>A in Senegalese. While c.3700A>G and c.1521_1523delCTT variants were also identified in patients of Sierra Leone descend in France (Stewart and Pepper, 2016; Mayer Lacrosniere et al., 2021). Furthermore, c.1657C >T, CFTRdel19-21, c.3745delC (3745delC) and c.4242 + 1G>A were identified in the West African descendants of Mali, while c. C233dup variant in patients of Côte d'Ivoire descend (Mayer Lacrosniere et al., 2021).

Variant c.2988 + 1G>A has earlier been linked to the black Africans, with a detection frequency of 40% and 12% in patients of African and European descents, respectively (Stewart and Pepper, 2016). This is supported by data from the West, with the highest frequency (12.3%) detection among African-Americans and in native African patients (Macek et al., 1997). Conversely, the common European variants: c.3846G>A, c.1624G >T and c.3909C>G, were found to be genetically linked to the Arabs of North Africa and to the Caucasians of South Africa through the Mediterranean ancestry (Van Rensburg et al., 2018). Similar to the Caucasian CF, c.1521_1523delCTT is a recurring variant amongst Africans. Other variants common in Africa include c.254G>A(p.Gly85Glu), c.1679 + 1G>C (1811 + 1G>C), c.1210-1G>C(1342-1G>C) (Stewart and Pepper, 2016), c.1652G>A and c.350G>A(p.Arg117His) (Maiuri et al., 2017). Although only a handful of countries in Africa have reported CF cases, the majority of these countries have reported a diagnosis of novel mutations with 100% frequency such as c.1609delA in Algeria, EX17a-EX18del in Senegal, and c.3327C>A in Cameroon (Stewart and Pepper, 2016).

There are no published CF data from many countries in the Western and Central Africa. For instance, a PubMed search review on Nigeria conducted by Akanbi and colleagues (2009) using "*Nigeria and Lung*" resulted in no indexed report of CF cases from the country. Another study by Oguonu et al. (2014) reported no record of CF from a 5-year (2007–2012) hospital data analysis on the prevalence of paediatric respiratory conditions (Oguonu et al., 2014). However, based on anecdotal reports, there have been a few undocumented cases of suspected CF child mortality from the country. Although there is no published current report of CF in Kenya, two cases of CF in patients of Kenyan descent were reported in 1959 (Paodoa et al., 1999).

3. Cystic Fibrosis in Asia

Cystic fibrosis in Asia is reported to be rare as confirmed by data from the West, where fewer people with Asian ancestry have CF (<1% incidence in the UK). Those with CF show relatively milder clinical manifestations as compared to the other populations (Bosch et al., 2017). The incidences of CF among Asian immigrants in Canada, the United Kingdom and United State were 1 in 9200, 1 in 10, 000, and 1 in 40, 000, respectively (Singh et al., 2015). A number of CFTR mutational variants have been identified among the Asian population, with the common variant c.1521_1523delCTT recorded at low frequency (Singh et al., 2015).

3.1. Cystic Fibrosis in Western Asia (The Middle East)

A study by Hammoudeh *et al.* collectively summarised the incidence rate of CF from the past few decades in some Arab countries both in West Asia and North Africa, which are categorized as the

under the Middle East geopolitical zone due to their ethnic similarities (Hamouda et al., 2020). The study found that the CF incidence in the West Asia ranges from 1 in 2500 to 1 in 16,000 live births. This includes Bahrain at 1:5800–7700, Jordan 1:2560, Kuwait 1:3500, Oman 1:2410, Saudi Arabia 1:4243, United Arab Emirate (UAE) 1:15876, Egypt 1:2664, and Morocco 1:1680 live births (Hamouda et al., 2020). Even though the F508del variant was not the most common, it was a common variant among the Arab countries both in West Asia and North Africa that include Saudi Arabia, United Arab Emirates (UAE), Oman, Lebanon, Jordan, Syria, Qatar, Algeria, Egypt, and Tunisia (Banjar and Angyalosi, 2015; AbdulWahab et al., 2021).

A study from the Kingdom of Saudi Arabia identified CF cases with a few novel variants that include; c.1418del (p.Gly473fs) which identified (17-20%) as the most common variant in the country (Banjar et al., 2021; Banjar and Angyalosi, 2015). Other novel variants identified include c.416A >T (p.His139Leu) which is unique to Saudi Arabia, c.579 + 1G >T, and c.1507del9 (Banjar and Angyalosi, 2015). These variants have different geographical distributions; c.1418del being most common in the Northern part, c.3700A>G in the Central, Southern and Western parts, while c.2988 + 1G>A in the Eastern part of Saudi Arabia (Banjar and Angyalosi, 2015). The latter variant (c.2988 + 1G>A) had an ancestry origin linked to Africa (Alibakhshi et al., 2008). Variants such as c.254G>A, c.I507del9, and c.3909C>G (Lopes-Pacheco, 2020) were common in the West and the Mediterranean. Some of the other common variants identified within population of Saudi Arabia were c.3700A>G, c.2988 + 1G>A, c.579 + 1G >T, c.416A >T (p. His139Leu), c.1911delG (p.Gln637HisfsX26), c.1645A>C (p.Ser549-Arg), and c.1652G>A at 12%, 11%, 9%, 6%, 5% and 1.5% respectively (Banjar et al., 2021).

Variant c.3700A>G was identified as the most common (65–66.7%) within population in Qatar (Hamouda et al., 2020; AbdulWahab et al., 2021). This variant was first described in South France (AbdulWahab et al., 2021). The c.1521_1523delCTT variant (15.5%) was also identified within the population of Qatar. The other variants identified in Qatar are also listed in Tables 1 and 2. The United Arab Emirates (UAE), unlike the neighbouring Saudi Arabia and Qatar, lacked a comprehensive study on CF. Only one article reported of a rare variant c.1647T>G (p.Ser549Arg), which was diagnosed heterogeneously in all CF patients while heterogenous c.1521_1523delCTT mutation was diagnosed in 80% of all cases (Frossard et al., 1998).

One CF case was reported in Kuwait in 1973, eight in 1977 and a few more in the 1980 s at an incidence of 1 in 3500 live births (Kollberg, 1986). However there are no recent available records of incidence and type of variants from Kuwait. Similarly, Bahrain lacks recent records on CF, with the most current incidence at 1 in 5800 live births as at 2002 (Eskandarani, 2002). Unlike Kuwait, some variants have been identified in Bahrain, with 2043delG (30.8%) variant as the most common, followed by p.His139>Leu (548A >T) and c.4041C>G (4041C>G), each at 19.3%. Others variants identified include c.1521_1523delCTT (7.7%), c.1161delC, c.1624G >T (p.Gly542Ter), c.2988 + 1G>A, and c.3529A >T (p. K1177X) variants, at 3.8% each (Eskandarani, 2002). In Oman, c.1647T>A (p.Ser549Arg) (75%) and c.1521_1523delCTT (14%) variants were the most common identified variants, similar to that recorded in the UAE. (Frossard et al., 1998) Variants c.1733-1734delTA and c.1175T>G (p.Val392Gly) identified at the rate of 7% and 4%, respectively, are both rare and novel (Fass et al., 2014). Tow addition novel variants; c. 4242 + 1G>C (Fass et al., 2014; Al Balushi et al., 2021) and c.575A >T (Al Sa'idi, L., Al Busaidi, N., Al Bimani, M., 2021); were also identified within the Omanis. Recently, c.2988 + 1G>A, L578delTA, c.1069G>A (p. Ala357Thr), and c.3718-2477C >T variants were identified for the first time within Omanis (Al Balushi et al., 2021).

Jordan recorded a low frequency of c.1521_1523delCTT (7.4%) as compared to the other countries in the Middle East. Six novel variants: c.164 + 9A >T. c.1163C >T. c.2279C >T. c.360delA (p. K120fs), c.3876delA (p.Val1293TyrfsX35) and c.3731G>A (p. Gly1244Glu) have been identified within the population. More variants such as c.1545_1546delTA (p.Tyr515X), c.3718-2477C >T (3849 + 5A>G) and c.54-5940_273 + 10250del21kb p.Ser18-ArgfsX16; CFTRdele2,3(21 kb) were also identified (Rawashdeh and Manal, 2000). Similarly, low frequency of c.1521_1523delCTT (2.78%) was detected among patients in the Children Welfare Hospital Baghdad in Iraq as compared to other Middle Eastern countries. Iraq detected 34 variants with the majority (\sim 70%) of these variants were associated with the polymorphic variants of IVS8, namely 5T, 7T, and 9T (Abdul-Qadir et al., 2021). Other common variants detected, although in lower frequency, were c.2988 + 1G>A and c.3846G>A at 4.17% each. c.3484C >T (2.78%). c.3140-26A>G (1.38%). c.1040G>C(1.38%). and c.2051_2052delAAinsG (1.38%) variants. A novel variant: c.1519_1521delATC (p.Ile507del) was also reported from this study at the rate of 1.3% (Abdul-Qadir et al., 2021). Contrary, another study from Al-Imamian Al-Kadhimiyain Teaching Hospital Iraq reported c.1408A>G (p.Met470Val) variant as the most common at 36.66%, followed by c.1521_1523delCTT at 16.6% (Zaidan et al., 2020). This supports an earlier finding by Sahami and team, where c.1408A>G was identified at 74.1% frequency, followed by c.1521_1523delCTT (14.81%), c.1397C>A (p.Ser466X) and c.3107C >T (p.Thr1036Ile) at 1.85% each (Katznelson and Ben-Yishay, 1978).

Between 1946 and 1976, Israel had an incidence approximating to the Caucasians of European ancestry with a total of 140 CF cases (Stafler et al., 2016). Unlike most of the countries in West Asia, Israel early on established the population carrier screening (PCS) for CF early on in 1999, which recorded a rapid decline in incidence, from 14.5 per 100,000 live births in 1990 to 6 per 100,000 live births in 2011 (Orgad et al., 2001). CF incidence and variant spectrum varies across the three ethnicities of the Israeli population (75% Jews, 20% Arabs and 5% others). Out of the 95 CF births recorded between 2004 and 2011. 64% were lews and 36% were Arabs (Orgad et al., 2001). The Israel Jews are made up of subethnic groups; Ashkenazi, Balkan, Tunisian, Libyan, Turkish, Georgian, Moroccan, Iranian, and Sephardi Jews (Quint et al., 2005). These Jewish communities have lived isolated from each other, hence the respective CF genetic load difference, with the highest CF detection amongst the Ashkenazi (69%), followed by Moroccan Jews (12.1%), and Balkan Jews (7.5%). The CF amongst the Iranian and Yemenis Jews (each at 0.7%) in Israel was very rare, presented with rare and unique variants c.2856G>C and c.3911T>G respectively (Mei-Zahav et al., 2018). The only variant identified in the Georgian Jews community was the unique variant c.1075C>A(p. Gln359Lys) (Essawi et al., 2015). In general, most frequent variants identified in Israel Jewish communities include W1282X (31.1%), F508del (35.6%), c.1624G >T (8.5%), c.3718-2477C >T (4.6%), c.3909C>G (3.6%), c.1075C>A and c.273 + 1G>A each at 2.8% (Mei-Zahav et al., 2018). Several others variants identified in the earlier mentioned West Asian countries were present in the cohort notably were c.254G>A, c.1647T>A, c.3700A>G, and, 3121-1G> (Orgad et al., 2001; Quint et al., 2005; Mei-Zahav et al., 2018). Variants c.3266G>A and c.3276C>G were unique to this population while c.1585-1G>A was previously identified in South Africa. On the other hand, variants c.2988 + 1Kbdel8.6 Kb, 2183AA>G and c.3883_3886delATTT were identified also in the Arab populations (Orgad et al., 2001).

More than 17 different CF variants were reported in Palestine (El-Shanti, 2020), at an earlier prevalence of 4 in 100,000 (Siryani et al., 2015) and a current incidence of 2.53 in 10,000 live births (El-Shanti, 2020). About 62.5% of the identified cases have at least

a single allele of c.1521_1523delCTT; hence making it the most frequent (37.5%) variant in Palestine. Just like many countries in West Asia, the common variants apart form c.1521_1523delCTT are c.2988 + 1G>A (12.5%), c.3909C>G (4.69%), c.254G>A (4.69%), as well as c.2988 + 1Kbdel8.6 Kb (4.69%). While c.3846G>A was mostly identified in heterogeneous compound, either with c.1521_1523delCTT (3.13%) or other unidentified (4.69%) variant (Siryani et al., 2015). In another study of a Palestinian cohort, c.1393-1G>A appeared to be the most common variant (Jarjour et al., 2018). Recently, a rare variant; c.3623del (p.Gly1208AlafsX3) was identified in a Palestinian-Lebanese child (Al-Baba and Zetoune, 2021).

As for Syria, 13 variants were identified while 22% of the variants remain undetectable (Des Georges et al., 1997). Just like Palestine, the most common variants identified in the Syrian were c.1521_1523delCTT (18-36%), c.3846G>A (12-17%), and c.3909C>G (6-8%). Other common variants were c.1040G>C (p. Arg347Pro) at 6%, c.399T>C/c.443T>C, CFTR del2-3(21 kb) and c.1 766 + 1G >T at 5% each (Des Georges et al., 1997). Recently, four more variants, c.2657 + 5G>A, c.2052delA, c.3718-2477C >T, and c.262_263delTT (p.Leu88IlefsX22), were detected in the Syrian cohort (Farra et al., 2010). Similarly, in Lebanon two putative novel variants, c.2016_2018del (p.Glu672del) and IVS21-28G>A, were diagnosed in the Lebanon cohort (Dogru et al., 2020). However, the most common CF variants were c.1521_1523delCTT, c.3846G>A, c.3909C>G, and c.11C >T at 37.5%, 15.6%, 9.4% and 7% respectively. (Dogru et al., 2020; Yiallouros et al., 2021).

Although Turkey is a European country, part of turkey is in the West Asia. Like Egypt, it is also classified as the Middle East geopolitical zone. The first reported case of CF in Turkey dated back to 1973, and the lack of CF data from that time prompted for the establishment of the Turkish National CF registry in 2017, which swiftly attained 30% (23 CF centres) coverage just between 2017 and 2020, recording an incidence of 2.9 per 10,000 live births. Just like in Europe, c.1521_1523delCTT (28%), c.3909C>G (4.9%), and c.1624G >T (4.5%) were the most common variants observed in Turkey, with 25.2% of the variants remaining unidentified. Other population variants in the Turkish were common c.1545_1546delTA (p.Tyr515X), c.254G>A, 2183AA>G and c.2657 + 5G>A (Izumikawa et al., 2009). Similarly, neighbouring Cyprus also recently established a national CF registry, and identified c.1521_1523delCTT (45.2%) variant as the most common. The novel variant p.Leu346Pro was an indigenous variant in 2007, and is currently diagnosed as the second most common (6.7%) variant in Cyprus (Yamashiro et al., 1997). Two new rare and novel variants, c.2629T>G (p.Ser877Ala) and c.531dupT (p.Gly178TripfsX5), were also recently identified and presumed unique to Cypriot descents. Other rare variants identified in this population were CFTRdup2 (3.8%) and a compound heterogeneous c.4200_4201delTG (p. Cys1400Terfs)/c.489 + 3A>G variant (Yamashiro et al., 1997). Several other variants have also been identified within the population, as seen in Table 1, with linkages to the Arabian ancestry in the West Asia and North Africa, as well as the Jewish Greek and European Caucasian ancestries (Yamashiro et al., 1997).

Many variants identified in West Asia have been identified in both Africa and the other Asian regions. This include $c.(2988 + 1_2989-1)_(3468 + 1_3469-1)del$, c.1000C > T, c.1210-12T (Mathew et al., 2021), and c.1364C > A. other Caucasian known variants are also common to both Africa and Asia; these include $c.1521_{1523}delCTT$, c.1624G > T, c.1652G > A, are among others, this is summarized in Table 1.

3.2. Cystic Fibrosis in East, South and South-East Asia

Over the years, an increase in CF cases have been reported from both East, South and South-East Asia. For instance, Japan had about

150 cases between the year 1951-2009 (Norzila et al., 2005), with an incidence of 1 in 350,000 (Yang et al., 2017). Malaysia reported of 16 cases between 1987 and 2003 based on a positive sweat test (Iwasa et al., 2001), and 10 cases were reported from Korea (Jung et al., 2011). Just as presumed in Africa, with several early deaths resulting from CF in East and South Asia were recorded before the age of 13 from jaundice, malnutrition, pneumonia, and neonatal meconium ileus (Tomoda et al., 2018). Many countries in these regions have little or no detection of the c.1521_1523delCTT variant, with the majority of the CF cases diagnosed at a later age, even though their medical records indicated CF phenotypic expression persisted since their early childhood (Kunitomo et al., 1991; Zilfalil et al., 2006). For instance, a case of a Japanese with medical history of CF symptoms who was tested negative by a CF genetic panel at early childhood (7 months), was later found to have CF at the age of 23 (Zilfalil et al., 2006). Nevertheless, more studies in Asia since the early 2000s have identified known and novel variants through direct genomic DNA sequencing. Although rare, the c.1521_1523delCTTl and c.1657C >T variants have been identified within these population alongside unique variants (Zheng and Cao, 2017; Tian et al., 2016; Kularatnam et al., 2015). For instance, the c.1521_1523delCTTl variant was identified in compound heterogeneous state mostly in children of European and Asian parentage (Eurasians), alongside other Asia variant variants. In China, the c.1521_1523delCTTl was diagnosed heterogeneously alongside the Chinese common variant c.2909G>A (p.Gly970Asp) (Prasad et al., 2010), or with c.2738A>G in Sri Lankan (Mei-Zahav et al., 2005).

3.3. Cystic Fibrosis in South Asia

Although c.1521_1523delCTT is a common variant across South Asia (Iran, India, Pakistan, and Sri Lanka), it has a lesser incidence (19%-44%) compared to that in the Western nations (Kabir et al., 2020). As of the late 1990 s, Canada, the United Kingdom, and the United States all reported similar CF incidence rates in the Indian ethnic group. South Asian immigrants were less likely to have c.1521 1523delCTT than the general population according to these countries national data registries (44-46% versus 65.1% and above). About 56% of the South Asian CF patients in these countries had either c.1647T>A (6%) or had other unidentified variants (Siddique et al., 2018). Furthermore, an extensive analysis to uncover unique variants apart from the c.1647T>A variant, identified variants including c.653T>A (p.Leu218X) (7.7%), c.1393-1G>A, c.3718-2477C >T, and c.1175T>G (p.Val392Gly) each at 3.8%, which were found in the South Asian population of Canada. Additionally, with the exception of c.1521_1523delCTT, none of the common Caucasian variants identified in the Canadian general populations were found in the South Asians (Siddique et al., 2018). Meanwhile, 26.7% of the CF alleles of the Canadian South Asian cohort remained unidentified, which was significantly high compared to the 8.2% unidentified in the general CF population of Canada (Siddique et al., 2018).

A number of CF cases were recorded from three tertiary care hospitals in Bangladesh from 2000 to 2017. However, the type of CF variants identified were not reported. Confirmatory sweat test was conducted using fast, cheap and effective sweat testing technique, which was locally developed. Out of the 224 enrolled CF suspected patients, 95 were confirmed to have CF from sweat chloride test, exhibiting different range of CF symptoms (Sharma Pandey et al., 2019). The first recorded case of CF in Nepal was of a 2 month male infant presented with severe anaemia and hypoproteinaemia, but was negative for the common Caucasian variants c.1521_1523delCTT, c.1624G >T, c.1652G>A and c.1657C >T (Ashavaid et al., 2012). The second case was identified in a dayold infant enrolled in a pilot study for newborn screening in Nepal,

Table 1

List of Common CF Variants Across the Different Regions of Africa and Asia.

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	c8G>C	8G>C
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c8G>C	8G>C
Wang et al., 2019; Teeratakulpisarn et al., 2006; Lumpaopong et al., 2009	Taiwan	c8G>C	8G>C
Ngukam et al., 2004	Indonesia	c8G>C	8G>C/G
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c8G>C	8G>C/G
Wakabayashi-Nakao et al., 2019	Iran	c.1000C >T (p.Arg334Trp)	R334W
Izumikawa et al., 2009	Turkey	c.1000C >T, p.Arg334Trp)	R334W
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.1000C >T(p.Arg334Trp)	R334W
Rawashdeh and Manal, 2000	Jordan	c.1000C >T(p.Arg334Trp)	R334W
Des Georges et al., 1997; Farra et al., 2010	Syria	c.1000C >T(p.Arg334Trp)	R334W
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	japan	c.1040G>A (p.Arg347His)	R347H
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.1040G>A (p.Arg347His)	R347H
Dogru et al., 2020	Cyprus	c.1040G>C(p.Arg347Pro)	R347P
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.1040G>C(p.Arg347Pro)	R347P
Abdul-Qadir et al., 2021; Katznelson and Ben-Yishay, 1978	Iraq	c.1040G>C(p.Arg347Pro)	R347P
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.1040G>C(p.Arg347Pro)	R347P
Des Georges et al., 1997; Farra et al., 2010	Syria	c.1040G>C(p.Arg347Pro)	R347P
Izumikawa et al., 2009	Turkey	c.1040G>C(p.Arg347Pro)	R347P
Loumi et al., 2008	Algeria	c.1210-12T (Mathew et al., 2021)	5T
Dogru et al., 2020	Cyprus	c.1210-12T (Mathew et al., 2021)	5T
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.1210-12T (Mathew et al., 2021)	5T
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.1210-12T (Mathew et al., 2021)	5T
Ratbi et al., 2008; Estivill et al., 1997	Morocco	c.1210-12T (Mathew et al., 2021)	5T
Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	c.1210-12T (Mathew et al., 2021)	5T
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.1210-12T (Mathew et al., 2021)	5T
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1210-12T (Mathew et al., 2021)	IVS-8-T5
Owusu et al., 2021	Ghana	c.1364C>A (p.Ala455Glu)	A455E
Orgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.1364C>A (p.Ala455Glu)	A455E
Rawashdeh and Manal, 2000	Jordan	c.1364C>A (p.Ala455Glu)	A455E
Owusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	South Africa	c.1364C>A (p.Ala455Glu)	A455E
Van de Vosse et al., 2010; Ngukam et al., 2004	Thailand	c.1364C>A (p.Ala455Glu)	A455E
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.1393-1G>A	1525-1G->A
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1393-1G>A	1525-1G>A
Wei et al., 2020; Indika et al., 2019	Pakistan	c.1393-1G>A	1525-1G>A
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.1393-1G>A	1525-1G>A
Mei-Zahav et al., 2005; Alibakhshi et al., 2021	Sri Lanka	c.1393-1G>A	1525-1G>A
Owusu et al., 2021	Ghana	c.1397C>A or c.1397C>G(p.Ser466X)	S466X
Wakabayashi-Nakao et al., 2019	Iran	c.1397C>A or c.1397C>G(p.Ser466X)	S466X
Abdul-Qadir et al., 2021; Katznelson and Ben-Yishay, 1978	Iraq	c.1397C>A or c.1397C>G(p.Ser466X)	S466X
Loumi et al., 2008	Algeria	c.1408A>G(p.Met470Val)	M470
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.1408A>G(p.Met470Val)	M470
Abdul-Qadir et al., 2021; Katznelson and Ben-Yishay, 1978	Iraq	c.1408A>G(p.Met470Val)	M470
Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	c.1408A>G(p.Met470Val)	M470
Izumikawa et al., 2009	Turkey	c.1408A>G(p.Met470Val)	M470
Nam et al., 2005	Vietnam	c.1408G>A	M470
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.1408G>A (p.Val470Met)	V470M
Wang et al., 2019; Teeratakulpisarn et al., 2006; Lumpaopong et al., 2009	Taiwan	c.1408G>A (p.Val470Met)	V470M; MET470VAL
Abdul-Qadir et al., 2021; Katznelson and Ben-Yishay, 1978	Iraq	c.1519_1521delATC(p.lle507del)	I507del
Ashavaid et al., 2012	Nepal	c.1521_1523delCTT (p.Phe508del)	F508del
Loumi et al., 2008	Algeria	c.1521_1523delCTT(p.Phe508del)	F508del
Eskandarani, 2002	Bahrain	c.1521_1523delCTT(p.Phe508del)	F508del
Stewart and Pepper, 2016; Mayer Lacrosniere et al., 2021	Cameroon	c.1521_1523delCTT(p.Phe508del)	F508del
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.1521_1523delCTT(p.Phe508del)	F508del
Dogru et al., 2020	Cyprus	c.1521_1523delCTT(p.Phe508del)	F508del
Mayer Lacrosniere et al., 2021	Democratic Republic of the Congo	c.1521_1523delCTT(p.Phe508del)	F508del
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.1521_1523delCTT(p.Phe508del)	F508del
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1521_1523delCTT(p.Phe508del)	F508del
Wakabayashi-Nakao et al., 2019	Iran	c.1521_1523delCTT(p.Phe508del)	F508del
Abdul-Qadir et al., 2021; Katznelson and Ben-Yishay, 1978	Iraq	c.1521_1523delCTT(p.Phe508del)	F508del
Drgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.1521_1523delCTT(p.Phe508del)	F508del
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.1521_1523delCTT(p.Phe508del)	F508del
Rawashdeh and Manal, 2000	Jordan	c.1521_1523delCTT(p.Phe508del)	F508del
Dogru et al., 2020; Yiallouros et al., 2021	Lebanon	c.1521_1523delCTT(p.Phe508del)	F508del
Ratbi et al., 2008; Fredj et al., 2011	Libya	c.1521_1523delCTT(p.Phe508del)	F508del
Ratbi et al., 2008; Estivill et al., 1997	Morocco	c.1521_1523delCTT(p.Phe508del)	F508del
Stewart and Pepper, 2016	Namibia	c.1521_1523delCTT(p.Phe508del)	F508del
Frossard et al., 1998	Oman	c.1521_1523delCTT(p.Phe508del)	F508del
Wei et al., 2020; Indika et al., 2019	Pakistan	c.1521_1523delCTT(p.Phe508del)	F508del
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.1521_1523delCTT(p.Phe508del)	F508del
AbdulWahab et al., 2021	Qatar	c.1521_1523delCTT(p.Phe508del)	F508del

ef.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
Alibakhshi et al., 2008; Lopes-Pacheco, 2020		-	
layer Lacrosniere et al., 2021	Sierra Leone	c.1521_1523delCTT(p.Phe508del)	F508del
wusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	South Africa	c.1521_1523delCTT(p.Phe508del)	F508del
unitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	c.1521_1523delCTT(p.Phe508del)	F508del
lei-Zahav et al., 2005; Alibakhshi et al., 2021	Sri Lanka	c.1521_1523delCTT(p.Phe508del)	F508del
es Georges et al., 1997; Farra et al., 2010	Syria	c.1521_1523delCTT(p.Phe508del)	F508del
an de Vosse et al., 2010; Ngukam et al., 2004	Thailand		
		c.1521_1523delCTT(p.Phe508del)	F508del
lessaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.1521_1523delCTT(p.Phe508del)	F508del
umikawa et al., 2009	Turkey	c.1521_1523delCTT(p.Phe508del)	F508del
rossard et al., 1998	United Arab Emirates	c.1521_1523delCTT(p.Phe508del)	F508del
oumi et al., 2008	Algeria	c.1624G >T(p.Gly542X)	G542X
ogru et al., 2020	Cyprus	c.1624G >T(p.Gly542X)	G542X
/akabayashi-Nakao et al., 2019	Iran	c.1624G >T(p.Gly542X)	G542X
ogru et al., 2020; Yiallouros et al., 2021	Lebanon	c.1624G >T(p.Gly542X)	G542X
atbi et al., 2008; Estivill et al., 1997	Morocco	c.1624G >T(p.Gly542X)	G542X
ryani et al., 2015; Jarjour et al., 2018	Palestine	c.1624G >T(p.Gly542X)	G542X
wusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	South Africa	c.1624G >T(p.Gly542X)	G542X
es Georges et al., 1997; Farra et al., 2010	Syria	c.1624G > T(p.Gly542X)	G542X
lessaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.1624G >T(p.Gly542X)	G542X
umikawa et al., 2009	Turkey	c.1624G >T(p.Gly542X)	G542X
rgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.1624G >T(p.Gly542X)	G542X
abir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1647T>A (p.Ser549Arg)	S549N
ogru et al., 2020; Yiallouros et al., 2021	Lebanon	c.1647T>A (p.Ser549Arg)	S549N
/ei et al., 2020; Indika et al., 2019	Pakistan	c.1647T>A (p.Ser549Arg)	S549N
ogru et al., 2020	Cyprus	c.1647T>A (p.Ser549Arg)	S549N/R
unitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Africa	c.1647T>A (p.Ser549Arg)	S549N/R
rgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.1647T>A (p.Ser549Arg)	S549R
atbi et al., 2008; Estivill et al., 1997	Morocco	c.1647T>A (p.Ser549Arg)	S549R
rossard et al., 1998	Oman	c.1647T>A/(p.Ser549Arg)	S549R
anjar et al., 2021; Banjar and Angyalosi, 2015; AbdulWahab et al., 2021; Alibakhshi et al., 2008; Lopes-Pacheco, 2020	Saudi Arabia	c.1647T>A/(p.Ser549Arg)	S549R
rossard et al., 1998	United Arab Emirates	c.1647T>A/(p.Ser549Arg)	S549R
shavaid et al., 2012	Nepal	c.1652G>A(p.Gly551Asp)	G551D
ogru et al., 2020	Cyprus	c.1652G>A(p.Gly551Asp)	G551D
tewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.1652G>A(p.Gly551Asp)	G551D
abir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1652G>A(p.Gly551Asp)	G551D
atbi et al., 2008; Estivill et al., 1997	Morocco		G551D
anjar et al., 2021; Banjar and Angyalosi, 2015; AbdulWahab et al., 2021;	Saudi Arabia	c.1652G>A(p.Gly551Asp) c.1652G>A(p.Gly551Asp)	G551D G551D
Alibakhshi et al., 2008; Lopes-Pacheco, 2020			05540
wusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	South Africa	c.1652G>A(p.Gly551Asp)	G551D
es Georges et al., 1997; Farra et al., 2010	Syria	c.1652G>A(p.Gly551Asp)	G551D
shavaid et al., 2012	Nepal	c.1657C >T(p.Arg553X)	R553X
rasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.1657C >T(p.Arg553X)	R553X
uwanjutha et al., 1998	Hong Kong	c.1657C >T(p.Arg553X)	R553X
abir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1657C >T(p.Arg553X)	R553X
layer Lacrosniere et al., 2021	Mali	c.1657C >T(p.Arg553X)	R553X
wusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	South Africa	c.1657C >T(p.Arg553X)	R553X
/ang et al., 2019; Teeratakulpisarn et al., 2006; Lumpaopong et al., 2009	Taiwan	c.1657C > T(p.Arg553X)	R553X
rasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.1666A>G (p.lle556Val)	1556V;
gukam et al., 2004	Indonesia	c.1666A>G (p.Ile556Val)	ILE556VAL I556V;
orzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.1666A>G (p.lle556Val)	ILE556VAL I556V;
am et al., 2005	Singapore	c.1666A>G (p.Ile556Val)	ILE556VAL I556V;
unitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	c.1666A>G (p.Ile556Val)	ILE556VAL I556V;
tewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	c.1766 + 152T>A	ILE556VAL 1898 + 152T>
/ei et al., 2020; Indika et al., 2019	Pakistan	c.1766 + 1G >T	1898 + 1521× 1898 + 1G >T
es Georges et al., 1997; Farra et al., 2010	Syria	c.1766 + 1G >T	1898 + 1G >T
an de Vosse et al., 2010; Ngukam et al., 2004	Thailand	c.1766 + 1G >T	1898 + 1G >T
tewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.1766 + 3A>G	1898 + 3A>C
tewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.1766 + 3A>G	1898 + 3A>G
rasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.1766 + 5G>A	1898 + 5G>A
uwanjutha et al., 1998	Hong Kong	c.1766 + 5G >T	1898 + 5G >T
	Taiwan	c.1766 + 5G >T	1898 + 5G >T
/ang et al., 2019; Teeratakulpisarn et al., 2006; Lumpaopong et al., 2009		c.1911del (p.Gln637fs)	Q637fs
/ang et al., 2019; Teeratakulpisarn et al., 2006; Lumpaopong et al., 2009 skandarani, 2002	Bahrain		
/ang et al., 2019; Teeratakulpisarn et al., 2006; Lumpaopong et al., 2009 skandarani, 2002 bdulWahab et al., 2021	Qatar	c.1911del (p.Gln637fs)	Q637fs
/ang et al., 2019; Teeratakulpisarn et al., 2006; Lumpaopong et al., 2009 skandarani, 2002		c.1911del (p.Gln637fs) c.1911del (p.Gln637fs)	Q637Fs
/ang et al., 2019; Teeratakulpisarn et al., 2006; Lumpaopong et al., 2009 skandarani, 2002 bdulWahab et al., 2021 anjar et al., 2021; Banjar and Angyalosi, 2015; AbdulWahab et al., 2021;	Qatar		-
/ang et al., 2019; Teeratakulpisarn et al., 2006; Lumpaopong et al., 2009 skandarani, 2002 bdulWahab et al., 2021 anjar et al., 2021; Banjar and Angyalosi, 2015; AbdulWahab et al., 2021; Alibakhshi et al., 2008; Lopes-Pacheco, 2020	Qatar Saudi Arabia	c.1911del (p.Gln637fs)	Q637Fs

K. Abubakar Bobbo, U. Ahmad, D.-M. Chau et al.

Table 1 (continued)
-----------	------------

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name	
Alibakhshi et al., 2008; Lopes-Pacheco, 2020				
Loumi et al., 2008	Algeria	c.2051_2052delAAinsG(p. Lys684SerfsX38)	2183AA>G	
Dogru et al., 2020	Cyprus	c.2051_2052delAAinsG(p.	2183AA>G	
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	Lys684SerfsX38) c.2051_2052delAAinsG(p.	2183AA>G	
Wakabayashi-Nakao et al., 2019	Iran	Lys684SerfsX38) c.2051_2052delAAinsG(p.	2183AA>G	
Abdul-Qadir et al., 2021; Katznelson and Ben-Yishay, 1978	Iraq	Lys684SerfsX38) c.2051_2052delAAinsG(p.	2183AA>G	
Rawashdeh and Manal, 2000	Jordan	Lys684SerfsX38) c.2051_2052delAAinsG(p.	2183AA>G	
Siryani et al., 2015; Jarjour et al., 2018	Palestine	Lys684SerfsX38) c.2051_2052delAAinsG(p.	2183AA>G	
Des Georges et al., 1997; Farra et al., 2010	Syria	Lys684SerfsX38) c.2051_2052delAAinsG(p.	2183AA>G	
Des Georges et al., 1997; Farra et al., 2010	Syria	Lys684SerfsX38) c.2051_2052delAAinsG(p.	2183AA>G	
		Lys684SerfsX38)		
Izumikawa et al., 2009	Turkey	c.2051_2052delAAinsG(p. Lys684SerfsX38)	2183AA>G	
Owusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018 Simulti et al., 2015; Jariour et al., 2018	South Africa	c.2051delA(p.Lys684SerfsX38)	2183delAA	
Siryani et al., 2015; Jarjour et al., 2018 Rawashdeh and Manal, 2000	Palestine Jordan	c.2052del (p.Lys684fs) c.2052delA(p.Lys684AspfsX38)	2184delA 2184delA	
Kawashden and Manar, 2000 Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.2052delA(p.Lys684AsnfsX38) c.2052dup (p.Gln685fs)	2184deiA 2184insA	
Mei-Zahav et al., 2005; Alibakhshi et al., 2021	Sri Lanka	c.2052dup (p.Gln685fs)	2184insA 2184insA	
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	c.2052dup (p.Gln685fs)	218delA	
Wei et al., 2020; Indika et al., 2019	Pakistan	c.2052dup (p.Gln685fs)	218delA	
Ratbi et al., 2008; Estivill et al., 1997	Morocco	c.220C >T(p.Arg74Trp)	R74W	
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.220C >T(p.Arg74Trp)	R74W	
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.223C>G (Arg75Gly)	R75G	
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.223C >T (Arg75Term)	R75X	
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.223C >T (p.Arg75X)	R75X	
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.223C >T(p.Arg75X)	R75X	
Rawashdeh and Manal, 2000	Jordan	c.224G>A (Arg75Gln)	R75Q	
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.224G>A (p.Arg75Gln)	R75Q	
Rawashdeh and Manal, 2000	Jordan	c.254G>A(p.Gly85Glu)	G85E	
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.254G>A(p.Gly85Glu)	G85E	
AbdulWahab et al., 2021	Qatar	c.254G>A(p.Gly85Glu)	G85E	
Des Georges et al., 1997; Farra et al., 2010	Syria	c.254G>A(p.Gly85Glu)	G85E	
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.254G>A(p.Gly85Glu)	G85E	
Izumikawa et al., 2009 Orgad et al., 2001: Mei Zahav et al., 2018	Turkey	c.254G>A(p.Gly85Glu)	G85E	
Orgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.254G>A(p.Gly85Glu)	G85E	
Dogru et al., 2020 Wakabayashi Nakao et al., 2010	Cyprus	c.2657 + 5G>A	2789 + 5G>A	
Wakabayashi-Nakao et al., 2019 Rawashdeh and Manal, 2000	Iran Iordan	c.2657 + 5G>A	2789 + 5G>A	
	Jordan Lebanon	c.2657 + 5G>A c.2657 + 5G>A	2789 + 5G>A 2789 + 5G>A	
Dogru et al., 2020; Yiallouros et al., 2021 Des Georges et al., 1997; Farra et al., 2010	Lebanon Syria	c.2657 + 5G>A c.2657 + 5G>A	2789 + 5G>A 2789 + 5G>A	
Izumikawa et al., 2009 Owusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	Turkey South Africa	c.2657 + 5G>A c.2657 + 5G>A	2789 + 5G>A 2789 + 5G>A	
Van de Vosse et al., 2010; Ngukam et al., 2024	Thailand	c.273 + 1G>A	405 + 1G>A	
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.273 + 1G>A	405 + 1G>A	
Orgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.273 + 1G>A	405 + 1G>A	
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.273 + 1G>A	405 + 1G>C	
Stewart and Pepper, 2016; Mayer Lacrosniere et al., 2021	Cameroon	c.273 + 4G>A	405 + 4A>G	
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.273 + 4G>A	405 + 4A>G	
Eskandarani, 2002	Bahrain	c.2988 + 1G>A	3120 + 1G>A	
Stewart and Pepper, 2016; Mayer Lacrosniere et al., 2021	Cameroon	c.2988 + 1G>A	3120 + 1G>A	
Mayer Lacrosniere et al., 2021	Democratic Republic of the Congo	c.2988 + 1G>A	3120 + 1G>A	
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.2988 + 1G>A	3120 + 1G>A	
Wakabayashi-Nakao et al., 2019	Iran	c.2988 + 1G>A	3120 + 1G>A	
Abdul-Qadir et al., 2021; Katznelson and Ben-Yishay, 1978	Iraq	c.2988 + 1G>A	3120 + 1G>A	
Ratbi et al., 2008; Estivill et al., 1997	Morocco	c.2988 + 1G>A	3120 + 1G>A	
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.2988 + 1G>A	3120 + 1G>A	
AbdulWahab et al., 2021	Qatar	c.2988 + 1G>A	3120 + 1G>A	
Banjar et al., 2021; Banjar and Angyalosi, 2015; AbdulWahab et al., 2021; Alibakhshi et al., 2008; Lopes-Pacheco, 2020	Saudi Arabia	c.2988 + 1G>A	3120 + 1G>A	
Owusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	South Africa	c.2988 + 1G>A	3120 + 1G>A	
Stewart and Pepper, 2016	Zimbabwe	c.2988 + 1G>A	3120 + 1G>A	
Suwanjutha et al., 1998	Hong Kong	c.3140-26A>G	3272-26A>G	
Abdul-Qadir et al., 2021; Katznelson and Ben-Yishay, 1978	Iraq	c.3140-26A>G	3272-26A>G	
	Iandan	c.3140-26A>G	3272-26A>G	
Rawashdeh and Manal, 2000	Jordan		<i>3272 201</i> G	

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	c.3140-26A>G	3272-26A>G
Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	c.3140-32T>C	3272-32T>C
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.3196C >T(p.Arg1066Cys)	R1066C
Dogru et al., 2020	Cyprus	c.3196C >T(p.Arg1066Cys)	R1066C
Rawashdeh and Manal, 2000	Jordan	c.3196C >T(p.Arg1066Cys)	R1066C
AbdulWahab et al., 2021	Qatar	c.3196C >T(p.Arg1066Cys)	R1066C
Aessaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.3196C >T(p.Arg1066Cys)	R1066C
Dogru et al., 2020	Cyprus	c.350G>A(p.Arg117His)	R117H
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.350G>A(p.Arg117His)	R117H
awashdeh and Manal, 2000	Jordan		R117H
	Lebanon	c.350G>A(p.Arg117His)	
ogru et al., 2020; Yiallouros et al., 2021		c.350G>A(p.Arg117His)	R117H
wusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	South Africa	c.350G>A(p.Arg117His)	R117H
unitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	c.350G>A(p.Arg117His)	R117H
es Georges et al., 1997; Farra et al., 2010	Syria	c.350G>A(p.Arg117His)	R117H
ogru et al., 2020; Yiallouros et al., 2021	Lebanon	c.350G>A(p.Arg117His)	R117H-T7
rasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.3700A>G (p.Ile1234Val)	I1234V
rgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.3700A>G (p.Ile1234Val)	I1234V
bdulWahab et al., 2021	Qatar	c.3700A>G (p.lle1234Val)	I1234V
anjar et al., 2021; Banjar and Angyalosi, 2015; AbdulWahab et al., 2021; Alibakhshi et al., 2008; Lopes-Pacheco, 2020	Saudi Arabia	c.3700A>G (p.lle1234Val)	I1234V
Aessaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.3700A>G (p.Ile1234Val)	I1234V
logru et al., 2020	Cyprus	c.3718-2477C >T (c.3717 + 12191C >T)	3849 + 10kbC
Cabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.3718-2477C >T (c.3717 + 12191C >T)	3849 + 10kbC
atbi et al., 2020, A212 et al., 2017, indika et al., 2019 atbi et al., 2008; Estivill et al., 1997	Morocco	c.3718-2477C >T (c.3717 + 12191C >T)	3849 + 10kbC
		, , , , , , , , , , , , , , , , , , ,	3849 + 10kbC 3849 + 10kbC
Rawashdeh and Manal, 2000	Jordan	c.3718-2477C >T (c.3717 + 12191C >T)	
Al Balushi et al., 2021	Oman	c.3718-2477C >T (c.3717 + 12191C >T)	3849 + 10KbC
Drgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.3718-2477C >T (c.3717 + 12191C >T)	3849 + 10kbC
Drgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.3731G>A(p.Gly1244Glu)	G1244E
Rawashdeh and Manal, 2000	Jordan	c.3731G>A(p.Gly1244Glu)	G1244E
Ratbi et al., 2008; Estivill et al., 1997	Morocco	c.3731G>A(p.Gly1244Glu)	G1244E
Dwusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	South Africa	c.3731G>A(p.Gly1244Glu)	G1249E
Ratbi et al., 2008; Estivill et al., 1997	Morocco	c.3808G>A(p.Asp1270Asn)	D1270N
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.3808G>A(p.Asp1270Asn)	D1270N
Dwusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	South Africa	c.3808G>A(p.Asp1270Asn)	D1270N
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.3808G>A(p.Asp1270Asn)	D1270N
oumi et al., 2008			W1282X
	Algeria	c.3846G>A(p.Trp1282X)	
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.3846G>A(p.Trp1282X)	W1282X
Drgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.3846G>A(p.Trp1282X)	W1282X
Rawashdeh and Manal, 2000	Jordan	c.3846G>A(p.Trp1282X)	W1282X
Ratbi et al., 2008; Estivill et al., 1997	Morocco	c.3846G>A(p.Trp1282X)	W1282X
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Africa	c.3846G>A(p.Trp1282X)	W1282X
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.3846G>A(p.Trp1282X)	W1282X
Dogru et al., 2020	Cyprus	c.3846G>A(p.Trp1282X)	W128X
Abdul-Qadir et al., 2021; Katznelson and Ben-Yishay, 1978	Iraq	c.3846G>A(p.Trp1282X)	W128X
Dogru et al., 2020; Yiallouros et al., 2021	Lebanon	c.3846G>A(p.Trp1282X)	W128X
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.3846G>A(p.Trp1282X)	W128X
Des Georges et al., 1997; Farra et al., 2010	Syria	c.3846G>A(p.Trp1282X)	W128X
zumikawa et al., 2009	Turkey	c.3846G>A(p.Trp1282X)	W128X
oumi et al., 2008	Algeria	c.3909C>G(p.Asn1303Lys)	N1303K
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.3909C>G(p.Asn1303Lys)	N1303K
Dogru et al., 2020	Cyprus	c.3909C>G(p.Asn1303Lys)	N1303K
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.3909C>G(p.Asn1303Lys)	N1303K
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.3909C>G(p.Asn1303Lys)	N1303K
Vakabayashi-Nakao et al., 2019	Iran	c.3909C>G(p.Asn1303Lys)	N1303K
awashdeh and Manal, 2000	Jordan	c.3909C>G(p.Asn1303Lys)	N1303K
Dogru et al., 2020; Yiallouros et al., 2021	Lebanon	c.3909C>G(p.Asn1303Lys)	N1303K
atbi et al., 2020; Fredj et al., 2011		(1 5)	
	Libya Maragaa	c.3909C>G(p.Asn1303Lys)	N1303K
Ratbi et al., 2008; Estivill et al., 1997	Morocco	c.3909C>G(p.Asn1303Lys)	N1303K
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.3909C>G(p.Asn1303Lys)	N1303K
anjar et al., 2021; Banjar and Angyalosi, 2015; AbdulWahab et al., 2021; Alibakhshi et al., 2008; Lopes-Pacheco, 2020	Saudi Arabia	c.3909C>G(p.Asn1303Lys)	N1303K
Dwusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	South Africa	c.3909C>G(p.Asn1303Lys)	N1303K
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	c.3909C>G(p.Asn1303Lys)	N1303K
Des Georges et al., 1997; Farra et al., 2010	Syria	c.3909C>G(p.Asn1303Lys)	N1303K
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.3909C>G(p.Asn1303Lys)	N1303K
zumikawa et al., 2009	Turkey	c.3909C>G(p.Asn1303Lys)	N1303K
	•	· · · · · · · · · · · · · · · · · · ·	
Drgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.3909C>G(p.Asn1303Lys)	N1303K
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.4045G>A (p.Gly1349Ser)	Q1352H
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.4056G>C (p.Gln1352His)	Q1352H
Ngukam et al., 2004	Indonesia	c.4056G>C (p.Gln1352His)	Q1352H
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.4056G>C (p.Gln1352His)	Q1352H
Nam et al., 2005	Singapore	c.4056G>C (p.Gln1352His)	Q1352H
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	c.4056G>C (p.Gln1352His)	Q1352H
		C. 10000 C (P.C. 110021115)	-
Dogru et al., 2020	Cyprus	c.489 + 1G >T	621 + 1G >T

Table 1	(continued)	
---------	-------------	--

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
Owusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	South Africa	c.489 + 1G >T	621 + 1G >T
Wei et al., 2020; Indika et al., 2019	Pakistan	c.489 + 1G >T	621 + 2T>C
Loumi et al., 2008	Algeria	c.489 + 1G >T	621 + 3A>G
Dogru et al., 2020	Cyprus	c.489 + 1G >T	621 + 3A>G
Loumi et al., 2008	Algeria	c.54-5940_273 + 10250del21kb p.	CFTRdel2,3(21-
	-	Ser18ArgfsX16)	kb)
Dogru et al., 2020	Cyprus	c.54-5940_273 + 10250del21kb(p.	CFTRdel2,3(21-
		Ser18ArgfsX16)	kb)
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.54-5940_273 + 10250del21kb(p.	CFTRdel2,3(21-
	051	Ser18ArgfsX16)	kb)
Mayer Lacrosniere et al., 2021	Mali	c.54-5940_273 + 10250del21kb(p.	CFTRdel2,3(21-
		Ser18ArgfsX16)	kb)
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.579 + 1G >T	711 + 1G>A
Banjar et al., 2021; Banjar and Angyalosi, 2015; AbdulWahab et al., 2021;	Saudi Arabia	c.579 + 1G >T	711 + 1G>A
Alibakhshi et al., 2008; Lopes-Pacheco, 2020			
Loumi et al., 2008	Algeria	c.579 + 1G >T	711 + 1G >T
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.579 + 1G >T	711 + 1G >T
Ratbi et al., 2008; Estivill et al., 1997	Morocco	c.579 + 1G >T	711 + 1G >T
Mayer Lacrosniere et al., 2021	Senegal	c.579 + 1G >T	711 + 1G >T
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.579 + 1G >T	711 + 1G >T
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.579 + 1G >T	711 + 1G >T

who unfortunately did not survive beyond the third month. Based on the pilot study, the prevalence rate of CF in Nepal was 1 per 4360 live births (Aziz et al., 2017).

In India, the increase in the CF incidences was associated with studies tracking the underlying genetic linkages to the high rate of infertility in males. This was due to congenital bilateral absence of vas deferens in more than 95% of males with CF (Kabir et al., 2020; Harendra de Silva et al., 1994). The T5 splicing and c.1521_1523delCTT variants were identified as the most common underlying genetic alteration at the rates of 52% and 23% respectively (Kabir et al., 2020; Harendra de Silva et al., 1994). Like many countries in Asia, several other common and unique variants were identified in India, these are listed in Table 2.

In a study conducted in Pakistan, CF patients were genetically screened the common variants. However, only c.1647T>A and c.1521_1523delCTT were identified. The recent incidence of found at 17.3%. However, a recent study reported c.1521_1523delCTT at an incidence of 27.9% (Indika et al., 2019). This was similar to the study by Shastri and team, who also identified c.1521_1523delCTT at the rate of 26.5% (homozygous in 20 patients and heterozygous in 13 patients of the 100 patients in the studies). The majority of the CF alleles (67%) in their study remained unidentified. Other rare variants identified in their study include c.1161delC (1.5%), c.1647T>A, c.1002-7_1002-5delTTT, c.3718-2477C >T at 1%. Novel variants identified from this cohort include c.1002-7_1002-5delTTT, c.445G >T (p.Gly149Ter) and c.547C>A (p.Leu183Ile). More novel variants identified in Indian and Pakistani population include c.3986-3987delC, p.1792InsA, c.206T>A (p.Leu69His), c.473G>A (Ser158Asn), c.1478A >T (Gln493Leu), c.1507A>C (p. Ile503Leu), c.3985G>C (Glu1329Gln) and c.744-6del4 that represented 15% of the CF alleles (Kabir et al., 2020; Aziz et al., 2017). Variants c.1521_1523delCTT, and c.1647T>A were the most common variants in the Indian/Pakistan cohort at 17% and 5.7% respectively. Apart from c.1521_1523delCTT, a few other Western variants were also identified, although rare, except for c.350G>A which was found at 3.4%. (Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019).

The first available recorded case of CF in Sri Lanka was of a 5 year girl presented with bronchopneumonia and recurrent chest

infection since six weeks of age. She was tested positive using the sweat test (Masekela et al., 2013). Rare cases of CF were also reported in Sri Lanka, with unique types of mutation, potentially linked to genetic flow from India and Europe (Alibakhshi et al., 2021). Just like in South Africa's (Kawase et al., 2022), CF cases in Sri Lanka were initially presented as kwashiorkor, but later confirmed as CF with c.1393-1G>A in one allele while the second mutation could not be identified (Siddique et al., 2018). Similar to India and Pakistan, c.1521_1523delCTT (69.74%) mutation is the most common variant in Sri Lankans, mostly diagnosed in a heterogenous state. Variants c.53 + 1G >T, c.2052dup, c.(273 + 1_ 274-1)_(1679 + 1_1680-1)del (CFTRdele4-11) and c.1393-1G>A identified in this population were previously reported in European CF patients (Alibakhshi et al., 2021). Also detected were rare variant c.1161delC previously identified in India and Pakistan, while variants c.1367T>C (Val456Ala) and c.2738A>G are unique to Sri Lanka. (Mei-Zahav et al., 2005; Alibakhshi et al., 2021).

Earlier investigations Alibakhshi et al., 2008) were unable to identify more than 40% of the variants in the Iranian population; however, a subsequent study by Alibakhshi et al. in (2021) identified more than 100 variants in Iran. These included eight novel variants c.406-8TNC, p.A566D, c.2576delA, c.2752-1_275delGGTGGCinsTTG, p.T10361, p.W1145R, c.3850-24GNA, and c.1342-?_1524+?del, all identified at a low frequency (Wakabayashi-Nakao et al., 2019). Like many countries, c.1521_1523delCTT (18%-21.22%) was diagnosed as the most common variant in the population (Wakabayashi-Nakao et al., 2019). Other common variants in the population include c.2051_2052delAAinsG (6.5%), c.1397C>G (5.8%), c.3909C>G (4.3%), 2789 + 5G>A (4.3%), c.1624G >T (3.6%), c.2988 + 1G>A (3.6%), c.1000C >T (2.9%) and c.2998delA (p.Ile1000LeufsX2) (2.9%). (Wakabayashi-Nakao et al., 2019).

3.4. Cystic Fibrosis in East Asia

Large deletions and duplications of *CFTR* gene were frequently detected in Japanese CF patients by direct sequencing. This included the most common variant; c.2908 + 1085_3367 + 260de l7201 (exon 16–17 deletion/CFTRdele16-17b), which also a unique

variant to CF patients of Asian descent (Iso et al., 2019). This was the most diagnosed variant (70%) in Japanese CF patients (Sohn et al., 2019). Other unique and frequent variants in the population were -966T>G, c.1408A>G, c.2562T>G (p.Thr854 =), c.3468G >T (p.Leu1156Phe), c.4056G>C (p.Gln1352His), c.4357C >T (Koh et al., 2006). More unique variants identified in Japan include c.1040G>A (p.Arg347His), D979A, c.3254A>G (p.His1085Arg), c.455T>G (p.Met152Arg), and c.1549T>A (p.Tyr517His) (Norzila et al., 2005). Other variants identified in this populations are listed in Table 2. Recently, another novel variant was identified in Japanese CF patients, which was characterized by the deletion of the entire promoter region (ASZ1 3' flanking region) of CFTR gene (Guo et al., 2018). These variants alongside c.650A>G (p. Glu217Gly), c.1666A>G, and c.3468G >T (p.Leu1156Phe) were also unique to Asia and frequently identified in compound heterogenous states with either c.1408A>G and (TG) polymorphism 5T, 7T. 11/12T variants (Koh et al., 2006).

Similarly, South Korea also reported a 50% allele prevalence of c.2908 + 1085_3367+ (p.(Gly970_Thr1122del), which is also known as CFTRdele16-17b (Liu et al., 2020). Earlier CF studies in South Korea identified c.293A>G and c.658C >T(p.Gln220X) variants which had been previously identified in France and England, respectively (Ahn et al., 2005), and recently in China (Cui et al., 2020; Liu et al., 2015). The c.293A>G (18.8%) variant was found be high recurring variant (Kunitomo et al., 1991). Variants IVS8-T5-M470V and c.1408A>G polymorphism, synonymous to East Asia, is highly associated with congenital bilateral absence of the vas deferens (Lin et al., 2019).

In China, the most common variant was the c.2909G>A, diagnosed at 31.6-37.5% allele frequency (Cui et al., 2020; Liu et al., 2015). Over the years, quite a number of rare novel variants have been identified among patients of Chinese origin. An earlier study reported of a novel and unique c.1766 + 5G >T (1898 + 5G >T) variant, identified in patients of Chinese origin. Other novel mutations identified in the Chinese population are exon 7–11 deletion (Δ E7-E11), c.3635delTa (V1212Afs15), c.1997T4Ga, c.2907A4C, and △E7-E11(c.744-?_1584 +?del) (Prasad et al., 2010). More novel variants discovered include c.579 + 1 579 + 2insACAT. c.753_754delAG, c.699C>A, c.1240X (Q414X), c.1117-1G>C, c.314 0-454_c.3367 + 249del931ins13, c.607A >T, c.325T>G (Y109D), exon 2–3 deletion Δ E2-3 (c.54-?_273+?del, \triangle E2–3), and c.1716C>A (Cui et al., 2020; Liu et al., 2015). Other common variants identified in China include c.1766 + 5G >T (13%), c.3911T>G (8.7%), c.263T>A (4.1%), c.293A>G (4.1%), c.1666A>G, and c.595C >T, each at 3.3% frequency. Several other common variants have been identified in this population (Cui et al., 2020; Liu et al., 2015). Interestingly, the c.1521_1523delCTT is extremely rare and when present, was commonly found in a heterozygous state alongside another type of variant (Prasad et al., 2010).

The most common variant in South China-Hong Kong was c.3068T>G, followed by c.1766 + 5G >T, while the China's most frequent variant; c.2909G>A was not diagnosed in the study (Suwanjutha et al., 1998). Just a handful of CF cases have been reported in Taiwan. Nevertheless, three novel CFTR mutations; E7X, 989-992insA and S308X were detected among Taiwanese CF patients (Teeratakulpisarn et al., 2006). Variant c.920G>A (S308X) was diagnosed in a heterogenous state alongside c.1408G>A (Wang et al., 2019). Furthermore, c.1766 + 5G >T and c.3068T>G variants were discovered at the highest frequency. A literature review of Taiwanese CF patients by Wang et al., (Wang et al., 2019), recorded the c.1766 + 5G >T (50%) variant as the most common in the cohort and was predominantly presented in a heterogenous state along with 2215insG + G2816A (33.33%). Only one case of the European variant c.1657C >T (16.67%) was reported, and was presented in a homozygous state (Lumpaopong et al., 2009). Another study of Taiwanese CF patients reported one and two homogenous cases of c.3718-2477C >T and c.1657C >T, respectively, while the both c.1766 + 5G >T and c.3068T>G were presented in heterogeneous states with each other (Teeratakulpisarn et al., 2006).

3.5. Cystic Fibrosis in South-East Asia

Just like Taiwan, the most common identified CF variant in Thailand was the c.1766 + 3A>G, occurring in 9 out of the 14 alleles reported (Van de Vosse et al., 2010). Variants c.1364C>A (p.Ala455c.4200_4201delTG (p.Cys1400X), Glu), c.3074C>A, and c.273 + 1G>A, were also recorded in Thailand, alongside two novel variants; c.738G>A (p.Lys246=; W202X) and c.869 + 3A >T (1001 + 3A >T). Only two cases of c.1521_1523delCTT were recorded within this population; one case had homozygous c.1521_1523delCTT (Ngiam et al., 2006), while the other was heterozygous c.1521_1523delCTT presented alongside the rare variant p.Phe311Leu (Padilla et al., 2022). Indonesia also reported of one novel variant: c.1303C>G (p.Leu435Val), and some known variant including c.861C>G. c.1666A>G. c.2052dup and eight types of polymorphism (Ngukam et al., 2004). The c.1666A>G and c.2052dup variants were also reported in the Chinese population of Singapore; however, at a higher frequency, alongside I125T and I2TG5T variants (Nam et al., 2005). Malaysia also reported of 16 cases between 1987 and 2003 based on a positive sweat test (Iwasa et al., 2001) however no variants were specifically reported. Recently, the Philippines has successfully implemented expanded newborn screening and is projecting about 100 CF cases per year based on the CF prevalence rate (5 cases per year) in Filipinos in California, USA (Luu and Chilvers, 2011). However, there is currently no available literature record of CF in the Philippines.

3.6. Cystic Fibrosis in Central Asia and other Asian countries

To date, Central Asia, Bangladesh, Brunei, Bhutan, Cambodia, Laos, Maldives, Myanmar, and Vietnam have no literature evidence of CF cases. However, a novel *CFTR* mutation c.3373G>C (Ex17b) was identified in a Laotian patient in France, presented with congenital bilateral absence of the vas deferens (Scotet et al., 2020). Similarly, Japanese researchers reported the first recorded CF cases (37 CF cases) in Vietnamese in Hanoi. All patients were presented with different types of c.1408G>A polymorphism mutations in the *CFTR* gene. The F c.1521_1523delCTT was not detected in any of the patients (Nam et al., 2005). Four other CF cases in Vietnamese have also been recorded in Canada, one of the cases was diagnosed at an advanced stage. The early age CF diagnosis of this patient was overlooked due the ethnicity misconception of CF occurrence in Asians, despite having chronic respiratory symptoms (Luu and Chilvers, 2011).

4. Prospect

The present surge in the CF cases in Africa and Asia is believed to be due to the evidence that CF occurs in patients of diverse ethnicity, based on reports from multi-ethnic countries like the USA, France, South America, Canada and the UK. This confirms that CF is rather a pan-ethnic disease condition than a Caucasian allied disease as earlier presumed (Banjar et al., 2021; Mayer Lacrosniere et al., 2021). This might have created awareness among physicians to further investigate CF in suspected patients with unconfirmed disease conditions with CF symptoms. Nevertheless, awareness is still inadequate in many countries where sweat screening and genetic testing tools are unavailable, especially in the identification of atypical manifestation and different variant spectrum (Cui et al., 2020). Furthermore, the existing mutational diagnostic (panel) kits

K. Abubakar Bobbo, U. Ahmad, D.-M. Chau et al.

Table 2

List of CF Variants Less Common Across the Different Regions of Africa and Asia.

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
Eskandarani, 2002 Wei et al., 2020; Indika et al.,	Bahrain Pakistan	c.1161delC c.1161delC	1161delC 1161delC
2019 Mei-Zahav et al., 2005; Alibakhshi et al., 2021	Sri Lanka	c.1161delC	1161delC
Rawashdeh and Manal, 2000 Prasad et al., 2010; Cui et al.,	Jordan China	c.3670delA c.3911T>G (p.lle1304Arg)	3670delA I1203R
2020; Liu et al., 2015 Aayer Lacrosniere et al., 2021	Democratic Republic of	(c.399T>C (p.Thr133 =)	399insT
rasad et al., 2010; Cui et al., 2020; Liu et al., 2015	the Congo China	△E18-E20(c.2909-?_3367 +?del) (p.Gly980_Thr1112delinsGly)	CFTR-dele18-20
2020, Eu et al., 2013 rasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	△E7-E11(c.744-?_1584 +?del)(p.Arg248_Glu528delinsArgfsX)	CFTR-dele7-11
Zozo, Ed. et al., 2013 Gabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	1029del (p.Phe342_Cys343insTer)	1161delC (C343)
rasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	3G>A (p.Met1lle)	M1I
Vang et al., 2019; Teeratakulpisarn et al., 2006;	Taiwan	920G>A	S308X
Lumpaopong et al., 2009 Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c. 388G>A (Gly463Asp)	G463D
Cabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c. 3986-3987delC	3986-3987delC
/an de Vosse et al., 2010; Ngukam et al., 2004	Thailand	c. 738G>A (p.Lys246 =) p. W202X	W202X
Dwusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	South Africa	c226G ≻T	(-94G >T)
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c966T>G	(-966T>G)
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c966T>G	(-966T>G/T)
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	c.(1766 + 1_1767-1)_(2619 + 1_2620-1)del	CFTR-dele14a
Mei-Zahav et al., 2005; Alibakhshi et al., 2021	Sri Lanka	c.(273 + 1_274-1)_(1679 + 1_1680-1)del	CFTRdele4-11
iryani et al., 2015; Jarjour et al., 2018	Palestine	c.(2988 + 1_2989-1)_(3367 + 1_3368-1)del	CFTR-dele17a-17b
Rawashdeh and Manal, 2000 Siryani et al., 2015; Jarjour et al., 2018	Jordan Palestine	c.(2988 + 1_2989-1)_(3468 + 1_3469-1)del c.(2988 + 1_2989-1)_(3468 + 1_3469-1)del	CFTR-dele17a-18 CFTR-dele17a-18
Mayer Lacrosniere et al., 2021 Rawashdeh and Manal, 2000	Senegal Jordan	c.(2988 + 1_2989-1)_(3468 + 1_3469-1)del c.(53 + 1_54-1)_(164 + 1_165-1)del	CFTRdele17a-18 CFTR-dele2
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.(53 + 1_54-1)_(164 + 1_165-1)del	CFTR-dele2
Stewart and Pepper, 2016 Rawashdeh and Manal, 2000	Zimbabwe Jordan	c.(53 + 1_54-1)_(164 + 1_165-1)del c.(53 + 1_54-1)_(164 + 1_165-1)del(ins186)	CFTR-dele2 CFTR del2(ins186)
Orgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.[1075C>A;1079C>A](p.[Gln359Lys;Thr360Lys])	Q359K/T360K
Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	c.*2G>A	4575 + 2G>A
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1002-7_1002-5deITTT	1002-7_1002-5delTT
Dogru et al., 2020	Cyprus	c.1037T>C (p.Leu346Pro)	L346P
Dogru et al., 2020	Cyprus	c.1042A>G	M348K
Cabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1055G>A (p.Arg352Gln)	R352Q
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.1055G>A (p.Arg352Gln)	R352Q
Al Balushi et al., 2021 Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	Oman China	c.1069G>A(p.Ala357Thr) c.1075C >T(p.Gln359X)	A357T G359X
Dogru et al., 2020	Cyprus	c.1135G >T(p.Glu379X)	E379X
Rawashdeh and Manal, 2000 Fass et al., 2014	Jordan Oman	c.1163C >T (Thr388Met) c.1175T>G (p.Val392Gly)	T388M
Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	c.1176 + 30G>C (Ser212Ser)	- 1176 + 30G>C
Dogru et al., 2020; Yiallouros et al., 2021	Lebanon	c.11C >T (Ser4Term)	S4X
Siryani et al., 2015; Jarjour et al.,	Palestine	c.1209 + 1G>A	1341 + 1G>A

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
2018			
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.1210-11TTT>G	1342-11TTT>G
Nam et al., 2005 Stewart and Pepper, 2016; Fathy	Singapore Egypt	c.1210-33_1210-6GT (Super, 1975)T (Mekki et al., 2021) c.1210–12T (Mehta, G., Macek, M., Jr, Mehta, A., & European Registry Working Group,	12TG5T 7T
et al., 2016; Sahami et al., 2014 Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	2010) c.1210–12T (Mehta, G., Macek, M., Jr, Mehta, A., & European Registry Working Group, 2010)	7T
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.1210–12T (Maiuri et al., 2017)	9T
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.1240C >T	Q414X
Ngukam et al., 2004 Norzila et al., 2005; Iso et al.,	Indonesia Japan	c.1303C>G (p.Leu435Val) c.1322T>C(p.Leu441Pro)	L435V L441P
2019; Guo et al., 2018 Kunitomo et al., 1991; Ahn et al., 2005: Lin et al. 2010	South Korea	c.1322T>C(p.Leu441Pro)	L441P
2005; Lin et al., 2019 Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	c.1325G >T (p.Gly442Val)	G442V
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1367T>C (p.Val456Ala)	V456A
Mei-Zahav et al., 2005; Alibakhshi et al., 2021	Sri Lanka	c.1367T>C(Val456Ala)	V456A
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.1373G >T	G458E
Owusu et al., 2021 Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	Ghana India	c.1373G >T (p.Gly458ValP c.1405A>G (p.Met469Val)	G458V M469V
Wang et al., 2019; Teeratakulpisarn et al., 2006;	Taiwan	c.1407G >T	M4691
Lumpaopong et al., 2009 Norzila et al., 2005; Iso et al.,	Japan	c.1408_1417delATGATTATGG/c.1549T>C (p.Met470GlufsX54/p.Tyr517His)	1540del10
2019; Guo et al., 2018 Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.1418del (p.Gly473fs)	1548delG
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.1418del (p.Gly473fs)	1548delG
Banjar et al., 2021; Banjar and Angyalosi, 2015; AbdulWahab et al., 2021; Alibakhshi et al., 2008; Lopes-Pacheco, 2020	Saudi Arabia	c.1418del (p.Gly473fs)	1548delG
Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	c.1473 + 28C >T	1473 + 28C >T
Loumi et al., 2008 Owusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	Algeria South Africa	c.1477_1478delCA(p.Gln493ValfsX10) c.1477C >T(p.Gln493X)	1609delCA Q493X
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1478A >T(Gln493Leu)	Q493L
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1507A>C (p.lle503Leu)	1503L
Abdul-Qadir et al., 2021; Katznelson and Ben-Yishay, 1978	Iraq	c.1519_1521delATC(p.lle507del)	1507del
Rawashdeh and Manal, 2000 Dogru et al., 2020	Jordan Cyprus	c.1545_1546delTA (p.Tyr515X/p.515 fs) c.1545_1546delTA (p.Tyr515X/p.515 fs)	1677delAT 1677delTA
Izumikawa et al., 2009 Norzila et al., 2005; Iso et al.,	Turkey japan	c.1545_1546delTA (p.Tyr515X/p.515 fs) c.1549T>(p.Tyr517His)	1677delTA 1540del10
2019; Guo et al., 2018 Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1550A>G (p.Tyr517Cys)	Y517C
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1558G >T (p.Val520Phe)	V520F; VAL520PHE
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.1572C>A (p.Cys524X)	C524X
Loumi et al., 2008 Rawashdeh and Manal, 2000 Orgad et al., 2001; Mei-Zahav	Algeria Jordan Israel	c.1584G>A c.1584G>A (p.Glu528 =) c.1585-1G>A	E528E 1716G/A(1584G>A) 1717-1G>A
et al., 2018 Owusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al.,	South Africa	c.1585-1G>A	17171G>A
2018 Ashavaid at al. 2012	Nonal	a 16740 NT	
Ashavaid et al., 2012 Eskandarani, 2002	Nepal Bahrain	c.1624G >T c.1624G >T (p.Gly542Ter)	1756G >T (G542*; GLY542TER)

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
Kabir et al., 2020; Aziz et al.,	India	c.1628A>C(Glu543Ala)	E543A
2017; Indika et al., 2019 Vei et al., 2020; Indika et al.,	Pakistan	c.164 + 12T>C	296 + 12T>C
2019 Rawashdeh and Manal, 2000	Jordan	c.164 + 9A >T	296 + 9A >T
Ratbi et al., 2008; Fredj et al., 2011	Libya	c.1670delC (p.Ser557PhefsX2)	1802delC
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.1679 + 1A>G	1811 + 1G>C
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.1679 + 1G>C	1811 + 1G->C (1679 + 2T>C)
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.1679 + 5A>G	1811 + 5A>G
Wei et al., 2020; Indika et al., 2019	Pakistan	c.1679G>C	R560S
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1679G>C (p.Arg560Thr)	R560H
Loumi et al., 2008	Algeria	c.1680-1G>A	1812 – 1G>A
Loumi et al., 2008	Algeria	c.1684G>A(p.Val562lle)	V562I
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1705T>G (p.Tyr569Asp)	Y569D
Wei et al., 2020; Indika et al., 2019	Pakistan	c.1705T>G (p.Tyr569Asp)	Y569D
AbdulWahab et al., 2021 Norzila et al., 2005; Iso et al.,	Qatar	c.1705T>G (p.Tyr569Asp)	Y569D
2019; Guo et al., 2005; Iso et al.,	Japan	c.1712T>C(p.Leu571Ser)	L571S
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.1716C>A(p.D572E)	D572E
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.1731C>A (p.Tyr577X)	Y577/1863C>A
Fass et al., 2014	Oman	c.1733-1734delTA(p.Leu578Argfs*)	1733-1734delTA (L578delTA)
Stewart and Pepper, 2016	Sudan	c.1736A>G (p.Asp579Gly	-
Stewart and Pepper, 2016	Sudan	c.1736A>G(p.Asp579Gly)	D579G
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.175A >T (Arg59Term)	R59X
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.1993A >T (p.Thr665Ser)	T665S
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.1993A >T (p.Thr665Ser)	T665S (T623S,)
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.19G >T (p.Glu7X)	E7X
Wang et al., 2019; Teeratakulpisarn et al., 2006;	Taiwan	c.19G >T (p.Glu7X)	E7X
Lumpaopong et al., 2009 Dogru et al., 2020; Yiallouros et al., 2021	Lebanon	c.2016_2018del (p.Glu672del)	E672del
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.202A >T(p.Lys68X)	K684fs/K684X
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.2036G>A	W679X
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.206T>A (p.Leu69His)	L69H
Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	c.2077T>C (p.Phe693Leu)	F693L
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.2089_2090insA (p.Arg697LysfsX33)	2221insA
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019 Kunitomo et al., 1991; Ahn et al.,	South Korea South Korea	c.2089_2090insA (p.Arg697LysfsX33) c.2089C >T (Arg697Term)	2221insA R697K
2005; Lin et al., 1991; Ann et al., 2005; Lin et al., 2019 Kabir et al., 2020; Aziz et al.,	India	c.2125C >T (p.Arg709X)	R709X
2017; Indika et al., 2019 Wei et al., 2020; Indika et al.,	Pakistan	c.2125C >T (p.Arg709X)	R709X
2019 Prasad et al., 2010; Cui et al.,	China	c.2125C >T (p.Arg709X)	R709X
2020; Liu et al., 2015 Prasad et al., 2010; Cui et al.,	China	c.214G>A	A72T
2020; Liu et al., 2015 Loumi et al., 2008	Algeria	c.2260G>A(p.Val754Met)	V754M
Rawashdeh and Manal, 2000	Jordan	c.2279C >T (Thr760Met)	T760M
AbdulWahab et al., 2021	Qatar	c.2290C >T(p.Arg764X)	R764
Prasad et al., 2010; Cui et al.,	China	c.2290C > T(p.Arg764X)	R764X

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
2020; Liu et al., 2015 Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al.,	Tunisia	c.2290C >T(p.Arg764X)	R764X
2017 Prasad et al., 2010; Cui et al.,	China	c.2353C >T(p.Arg785X)	R785X
2020; Liu et al., 2015 Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al.,	Tunisia	c.2353C >T(p.Arg785X)	R785X
2017 Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.2374C >T(p.Arg792X)	R792X
2020, Euret al., 2013 Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.253G>A (p.Gly85Arg)	G85R
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.2547C>A(p.Tyr849X)	Y849X
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.2555A >T(Tyr852Phe)	Y852F
Loumi et al., 2008 Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Algeria Japan	c.2562T>C or c.2562T>G or c.2562T>A(p.Thr854Thr) c.2562T>C or c.2562T>G or c.2562T>A(p.Thr854Thr)	T854T T854T
Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	c.2562T>C or c.2562T>G or c.2562T>A(p.Thr854Thr)	T854T
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	japan	c.2562T>G (p.Thr854 =)	2562T>G
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.259T>A(Phe87Ile)	F87I
Owusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al., 2018	South Africa	c.262_263delTT(p.Leu88IlefsX22)	394delTT
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.2620-15C>G	2620-15C>G (2752- 26A->G)
Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	c.2620-15C>G	2752-15C>G (2620- 15C>G)
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.263T>A or c.263T>G (p.Leu88X)	L88X
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	c.263T>A or c.263T>G (p.Leu88X)	L88X
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.2658-1G>C	2790-1G>C
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.2658-1G>C	2790-1G>C
Wang et al., 2019; Teeratakulpisarn et al., 2006; Lumpaopong et al., 2009	Taiwan	c.2684G>A (p.Ser895Asn)	S895N
AbdulWahab et al., 2021 Prasad et al., 2010; Cui et al.,	Qatar China	c.269T>C (Leu90Ser) c.271G>A(p.Gly91Arg)	L940 G91R
2020; Liu et al., 2015 Stewart and Pepper, 2016; Mayer	Cameroon	c.273 + 4A>G (p.Gly91 =)	273 + 4A>G
Lacrosniere et al., 2021 Mei-Zahav et al., 2005; Alibakhshi	Sri Lanka	c.2738A>G	Y913C_1282C>G
et al., 2021 Izumikawa et al., 2009 Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Turkey Tunisia	c.274G>A(p.Glu92Lys) c.2766C >T (p.Val922_Thr923 =)	E92K 2766del8
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.2770G>A (p.Asp924Asn)	D924N
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.2848delA	2848delA
Dogru et al., 2020; Yiallouros et al., 2021	Lebanon	c.2856G>C	M9521
Orgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.2856G>C (p.Met952IIe)	M952I
Mayer Lacrosniere et al., 2021	Democratic Republic of the Congo	c.287C>A (p.Ala96Glu)	A96E
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.2907A>C	A969A/E17
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.2908 + 1085_3367+ (p.(Gly970_Thr1122del)-CFTR)	CFTR-dele16-17b
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.2909G>A(p.Gly970Asp)	G970D
Wei et al., 2020; Indika et al., 2019	Pakistan	c.292C >T (Gln98Term)	Q98X
Loumi et al., 2008	Algeria	c.2930C >T(p.Ser977Phe)	S977F
			(continued on next nat

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
Norzila et al., 2005; Iso et al.,	Japan	c.293A>G	Q98R
2019; Guo et al., 2018 Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	c.293A>G	Q98R
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.293A>G (Gln1291Term)	Q98R
Rawashdeh and Manal, 2000	Jordan	c.297–10T>G (p.Pro99 =)	297–10T>G
Al Balushi et al., 2021	Oman Iraa	c.2988 + 1G>A	3120 + 1G>A
Abdul-Qadir et al., 2021; Katznelson and Ben-Yishay, 1978	Iraq	c.2988 + 1G>A	IVS8
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.2988 + 1Kbdel8.6 Kb	3120 + 1Kbdel8.6 Kb
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.2988 + 2T>C	3120 + 2T>C
Orgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.2989-1G>A	3121-1G>A
Loumi et al., 2008 Orgad et al., 2001; Mei-Zahav	Algeria Israel	c.2991G>C(p.Leu997Phe) c.2991G>C(p.Leu997Phe)	L997F L997F
et al., 2018	ISIdel	c.299 G>C(p.Leu997 Pile)	L997F
Izumikawa et al., 2009 Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	Turkey China	c.2991G>C(p.Leu997Phe) c.2997_3000del (p.Leu999_Ile1000insTer)	L99TF 3129del4 (I1000)
AbdulWahab et al., 2021 Kabir et al., 2020; Aziz et al.,	Qatar India	c.2997_3000del (p.Leu999_Ile1000insTer) c.2997_3000del (p.Leu999_Ile1000insTer)	c.2997_3000delAATTA I1000x
2017; Indika et al., 2019 Wakabayashi Nakao et al. 2010	Iran	c 2008 dol (p llo 10001 oute X2)	3130delA
Wakabayashi-Nakao et al., 2019 Kabir et al., 2020; Aziz et al.,	Iran India	c.2998delA (p.lle1000LeufsX2) c.2T>C (p.Met1Thr)	M1T
2017; Indika et al., 2019 Stewart and Pepper, 2016; Owusu	Rwanda	c.3041-71A>G	3041-71A>G
et al., 2021; Mutesa et al., 2009 Owusu et al., 2021; Zampoli et al., 2021; Van Rensburg et al.,	South Africa	c.3064_3117delGTGATAGTGGCTTTTATTATGTTGAGAGCATATTTCCTCCAAACCTCACAGCAA (p.Val1022_Gln1039del)	3196del54
2018 Des Georges et al., 1997; Farra et al., 2010	Syria	c.3067_3072delATAGTG (p.lle1023_Val1024del)	3199del6
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.3067_3072delATAGTG(p.lle1023_Val1024del)	3199del6
Suwanjutha et al., 1998 Wang et al., 2019; Teeratakulpisarn et al., 2006;	Hong Kong Taiwan	c.3068T>G (p.lle1023Arg) c.3068T>G (p.lle1023Arg)	l1023R l1023R
Lumpaopong et al., 2009 Van de Vosse et al., 2010; Ngukam et al., 2004	Thailand	c.3074C>A (p.Ala1025Asp)	A1025D
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.3080T>C (p.lle1027Thr)	3123G>C (I1027T)
Abdul-Qadir et al., 2021; Katznelson and Ben-Yishay, 1978	Iraq	c.3107C >T (p.Thr1036lle)	T1036I
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.3128T>G (Leu1043Arg)	L1043R
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.3154T>G(p.Phe1052Val)	F1052V
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.319-326delGCTTCCTA(p.A107X)	A107X
Mayer Lacrosniere et al., 2021	Democratic Republic of the Congo	c.3197G>A(p.Arg1066His)	R1066H
Ratbi et al., 2008; Estivill et al., 1997	Morocco	c.3208C >T(p.Arg1070Trp)	R107W
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	japan	c.3254A>G (p.His1085Arg)	H1085R
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.3254A>G (p.His1085Arg)	H1085R; HIS1085AR
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018 Orgad et al., 2001; Mei-Zahav	Japan Israel	c.3257C >T (Thr1086lle) c.3266G>A (p.Trp1089X)	T1086I W1089X
et al., 2018 orgad et al., 2018 Orgad et al., 2001; Mei-Zahav	Israel	c.3276C>A (p.11p1089X)	¥1092X
et al., 2018 Prasad et al., 2010; Cui et al.,	China	c.327T>A(p.Tyr109X)	Y109D/C
2020; Liu et al., 2015 Dogru et al., 2020	Cyprus	c.328G>C (p.Asp110His)	D110H
Izumikawa et al., 2009	Turkey	c.328G>C (p.Asp110His)	D110H

Table	2 ((continued)
-------	-----	-------------

et al., 2010 Kabir et al., 2020; Aziz et al.,

2017

1978

2018

2017

2018 Eskandarani, 2002

2017

2017

et al., 2018; El-Seedy et al.,

Syria

India

Egypt

Iraq

Egypt

India

Tunisia

India

South Africa

Sierra Leone

Bahrain

Iordan

Tunisia

China

Tunisia

China

Jordan

Taiwan

South Africa

c.3484C >T

c.3484C >T (p.Arg1162Ter)

c.3484C >T(p.Arg1162X)

c.3484C >T(p.Arg1162X)

c.3484C >T(p.Arg1162X)

c.3484C >T(p.Arg1162X)

c.3490_3491insT (p.Lys1165X)

c.3528delC(p.Lys1177SerfsX15)

c.3497T>G (p.Phe1166Cys)

c.349C>G (p.Arg117Gly)

c.3529A >T (p.K1177X)

c.358G>A(p.Ala120Thr)

c.3607A>G (p.Ile1203Val)

c.3607A>G (p.Ile1203Val)

c.366T>A(p.Tyr122X)

c.3718-2477C >T

c.3691delT(p.S1231PfsX4)

c.3718-2477C >T (c.3717 + 12191C >T)

c 3634G>A

Des Georges et al., 1997; Farra

2017; Indika et al., 2019 Stewart and Pepper, 2016; Fathy

et al., 2016; Sahami et al., 2014 Abdul-Qadir et al., 2021;

Katznelson and Ben-Yishay,

Owusu et al., 2021; Zampoli et al.,

2021; Van Rensburg et al.,

Stewart and Pepper, 2016; Fathy

2017; Indika et al., 2019 Messaoud et al., 2005; Boussetta

Kabir et al., 2020; Aziz et al.,

2017; Indika et al., 2019 Owusu et al., 2021; Zampoli et al.,

2021; Van Rensburg et al.,

Rawashdeh and Manal, 2000

Mayer Lacrosniere et al., 2021

Prasad et al., 2010; Cui et al.,

Prasad et al., 2010; Cui et al.,

2020; Liu et al., 2015 Rawashdeh and Manal, 2000

Wang et al., 2019;

2020; Liu et al., 2015 Messaoud et al., 2005; Boussetta

Messaoud et al., 2005; Boussetta

et al., 2018; El-Seedy et al.,

et al., 2018; El-Seedy et al.,

Teeratakulpisarn et al., 2006; Lumpaopong et al., 2009

et al., 2018; El-Seedy et al.,

et al., 2016; Sahami et al., 2014 Kabir et al., 2020; Aziz et al.,

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
Rawashdeh and Manal, 2000	Jordan	c.3299A>C(Gln1100Pro)	Q1100P
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.3299A>C(Gln1100Pro)	Q1100P
Stewart and Pepper, 2016	Sudan	c.3304A >T (p.Arg1102X)	R1102X
Stewart and Pepper, 2016	Sudan	c.3304A >T(p.Arg1102X)	R1102X
Loumi et al., 2008	Algeria	c.3310G >T(p.Glu1104X)	E1104X
Ratbi et al., 2008; Fredj et al., 2011	Libya	c.3310G >T(p.Glu1104X)	E1104X
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.3310G >T(p.Glu1104X)	E1104X
Stewart and Pepper, 2016; Mayer Lacrosniere et al., 2021	Cameroon	c.3327C>A (p.Tyr1109Ter)	Y1109X
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.3327C>A (p.Tyr1109Ter)	Y1109X
Scotet et al., 2020	Laos	c.3373G>C	
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.3406G>A (Vp.Ala1136Thr)	A1136T
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.3407T>C (p.lle1136Thr)	I1136T
Rawashdeh and Manal, 2000	Jordan	c.3454G>C (p.Asp1152His)	D1152H
Izumikawa et al., 2009	Turkey	c.3454G>C (p.Asp1152His)	D1152H
Orgad et al., 2001; Mei-Zahav et al., 2018	Israel	c.3454G>C (p.Asp1152His)	D1152H
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.3468 + 5G>A	3600 + 6T>C
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.3468G >T (p.Leu1156Phe)	L1156F
Dogru et al., 2020	Cyprus	c.3469-65C>A	3601-65C>A
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.3472C >T(p.Arg1158X)	R1158X
Messaoud et al., 2005; Boussetta	Tunisia	c.3472C >T(p.Arg1158X)	R1158X

R1162W

R1162

R1162X

R1162X

R1162X

R1162X

3622insT

F1166C

3659delC

A120T

11203V

I1203V

Y122X

S1231PfsX4

3849 + 5A>G

3849 + 10 kb

(-117G>C) (R117G)

3661A >T (K1177X)

V1212Afs*15/16

(continued	on	next	page)	

Table 2	2 (con	tinued)
---------	---------------	---------

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.3718-24G>A(3850-24G->A)	3718-24G>A
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.3729delAinsTCT	3729delAinsTCT
Mayer Lacrosniere et al., 2021	Mali	c.3745delC	3745delC
Nam et al., 2005	Singapore	c.374T>C (p.lle125Thr)	I125T
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	c.374T>C (p.lle125Thr)	I125T
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.3752G>A(p.Ser1251Asn)	S1251N
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.3793G>A (p.Gly1265Arg)	G1265R
Siryani et al., 2015; Jarjour et al., 2018	Palestine	c.3793G>A(p.Gly1265Arg)	3793G>A
Wei et al., 2020; Indika et al., 2019	Pakistan	c.3868C >T(Pro1290Ser)	P1290s
Loumi et al., 2008	Algeria	c.3870A>G (p.Pro1290 =)	P1290P
Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	c.3870A>G (p.Pro1290 =)	P1290P
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	c.3871C >T	Q1291X
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.3872A>G(p.Gln1291Arg)	Q1291R
Rawashdeh and Manal, 2000	Jordan	c.3876delA (p.Val1293TyrfsX35)	4006delA
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.3877G>A (Val1293lle)	V1293I
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.387A>G (p.Ala129 =)	3877G>A
Dogru et al., 2020; Yiallouros et al., 2021	Lebanon	c.3883_3886delATTT(p.lle1295PhefsX32)	4010del4
Dogru et al., 2020; Yiallouros et al., 2021	Lebanon	c.3889dupG(p.Ser1297PhefsX5)	4016insG
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.3889dupT(p.Ser1297PhefsX5)	4016insT
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.3889dupT(p.Ser1297PhefsX5)	406insA/T
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.38C >T (Ser13Phe)	S13F
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.3985G>C(Glu1329Gln)	E1329Q
Eskandarani, 2002	Bahrain	c.4041C>G	N1303K
Dogru et al., 2020; Yiallouros et al., 2021	Lebanon	c.4096-28G>G	4096-28G>G
Mayer Lacrosniere et al., 2021	Senegal	c.4136 + 1G>A	4136 + 1G>A
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.4136 + 2T>G	4268 + 2T>G
Loumi et al., 2008	Algeria	c.4139delC(p.Thr1380AsnfsX4)	4271delC
Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	c.413T>A	V348M
Prasad et al. 2010: Cui et al	China	c 414 415insCTA (n Leu138 His139insLeu)	414 415insCTA

414_415insCTA c.414_415insCTA (p.Leu138_His139insLeu) Prasad et al., 2010; Cui et al., China 2020; Liu et al., 2015 Kabir et al., 2020; Aziz et al., India c.4141T>C (p.Tyr1381His) Y1381H 2017; Indika et al., 2019 H139L Banjar et al., 2021; Banjar and Saudi c.416A >T (p.His139Leu) Angyalosi, 2015; AbdulWahab Arabia

4330delTG
4332delTG
A141D
4230C>A
4374 + 1G>A
4382delA
4382delA
R1453W
R1453W
Q1463Q

Stew et al., 2021; Mutesa et al., 2009

et al., 2021; Alibakhshi et al.,

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
Dogru et al., 2020	Cyprus	c.4426C >T (p.Gln1476X)	Q1476X
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.443T>C(p.lle148Thr)	I148T
Rawashdeh and Manal, 2000 Des Georges et al., 1997; Farra	Jordan Syria	c.443T>C(p.lle148Thr) c.443T>C(p.lle148Thr)	I148T I148T
et al., 2010	Sylla	C.44517C(p.nc1461ni)	
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.445G >T (p.Gly149Ter)	G149X
Stewart and Pepper, 2016; Fathy	Egypt	c.454A>G (Met152Val)	M152V
et al., 2016; Sahami et al., 2014 Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	japan	c.455T>G (p.Met152Arg)	M152R
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	c.455T>G(Met152Arg)	M152R
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.470T>G(Phe157Cys)	F157C
Kabir et al., 2020; Aziz et al.,	India	c.473G>A(Ser158Asn)	S158N
2017; Indika et al., 2019 Orgad et al., 2001; Mei-Zahav	Israel	c.494T>C (p.Leu165Ser)	L165S
et al., 2018 Kunitomo et al., 1991; Ahn et al., 2005: Lin et al., 2010	South Korea	c.496A>G (p.Lys166Glu)	K166E
2005; Lin et al., 2019 Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.505A>G (Ser169Gly)	S169G
Kabir et al., 2020; Aziz et al.,	India	c.53 + 1G>C	185 + 1G>C
2017; Indika et al., 2019 Mei-Zahav et al., 2005; Alibakhshi et al., 2021	Sri Lanka	c.53 + 1G >T	185 + 1G >T
Dogru et al., 2020	Cyprus	c.531dup (p.Gly178fs)	G178fs
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.532G>A (p.Gly178Arg)	G178R
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.54-?_273 +?del, △E2–3(p.S18Rfs*16)	CFTR-Exon dele2-3
Loumi et al., 2008 Dogru et al., 2020	Algeria Cyprus	c.54-5940_273 + 10250del21kb p.Ser18ArgfsX16) c.54-5940_273 + 10250del21kb(p.Ser18ArgfsX16)	CFTRdel2,3(21-kb) CFTRdel2,3(21-kb)
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	c.54-5940_273 + 10250del21kb(p.Ser18ArgfsX16)	CFTRdel2,3(21-kb)
Mayer Lacrosniere et al., 2021	Mali	c.54-5940_273 + 10250del21kb(p.Ser18ArgfsX16)	CFTRdel2,3(21-kb)
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.547C>A (p.Leu183Ile)	L183I
Wei et al., 2020; Indika et al., 2019	Pakistan	c.547C>A (p.Leu183lle)	L183I
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	c.559A>G (p.Asn187Asp)	N187D
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.567C>A	N189K
Messaoud et al., 2005; Boussetta	Tunisia	c.57G>A (p.Trp19X)	W19X
et al., 2018; El-Seedy et al., 2017			
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.595C >T(p.His199Tyr)	H199Y
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.595C >T(p.His199Tyr)	H199Y
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al.,	Tunisia	c.601G>A (p.Val201Met)	V201M
2017 Wang et al., 2019;	Taiwan	c.601G>A(p.Val201Met)	V201M
Teeratakulpisarn et al., 2006;	Idiwali	c.ourg>A(p.vaizonmet)	V201W
Lumpaopong et al., 2009 Stewart and Pepper, 2016; Owusu	Rwanda	c.610G>A (p.Ala204Thr)	A204T
et al., 2021; Mutesa et al., 2009 Norzila et al., 2005; Iso et al.,	Japan	c.647G>A (Trp216Term)	W216X (780G → A)
2019; Guo et al., 2018 Norzila et al., 2005; Iso et al.,	Japan	c.650A>G (p.Glu217Gly)	E217G (GLU217GLY)
2019; Guo et al., 2018 Kunitomo et al., 1991; Ahn et al.,	South Korea	c.650A>G (p.Glu217Gly)	E217G (GLU217GLY)
2005; Lin et al., 2019 Prasad et al., 2010; Cui et al.,	China	c.650A>G (p.Glu217Gly)	E217G (GLU217GLY)
2020; Liu et al., 2015 Kabir et al., 2020; Aziz et al.,	India	c.653T>A (p.Leu218X)	L218X
2017; Indika et al., 2019 Wei et al., 2020; Indika et al.,	Pakistan	c.653T>A (p.Leu218X)	L218X
2019 Kunitomo et al., 1991; Ahn et al.,	South Korea	c.658C >T(p.Gln220X)	Q220X
2005; Lin et al., 2019		ч . – – –	-

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
Messaoud et al., 2005; Boussetta et al., 2018; El-Seedy et al., 2017	Tunisia	c.680T>G(p.Leu227Arg)	L22TR/L227R
Loumi et al., 2008	Algeria	c.743 + 40A>G	875 + 40A>G
Cabir et al., 2020; Aziz et al.,	India	c.744-6del4	876-6del4
2017; Indika et al., 2019			
Vang et al., 2019;	Taiwan	c.753_754delAG	2215insA/G
Teeratakulpisarn et al., 2006;			
Lumpaopong et al., 2009 Iorzila et al., 2005; Iso et al.,	Japan	c.800A >T (p.Glu267Val)	E267V
2019; Guo et al., 2018	Japan	c.000// >1 (p.0/u20/ var)	22071
Wang et al., 2019;	Taiwan	c.861C>G	N287K
Teeratakulpisarn et al., 2006;			
Lumpaopong et al., 2009	To do a set o	- 0010- C (n. A-n. 2071)	NOOTK
Ngukam et al., 2004 Suwanjutha et al., 1998	Indonesia Hong Kong	c.861C>G (p.Asn287Lys) c.868C >T (p.Gln290X)	N287K Q290
oumi et al., 2008	Algeria	c.869 + 11C >T	1001 + 11C >T
Stewart and Pepper, 2016; Owusu	Rwanda	c.869 + 11C >T	1001 + 11C >T
et al., 2021; Mutesa et al., 2009			
/an de Vosse et al., 2010; Ngukam	Thailand	c.869 + 3A >T	1001 + 3A >T
et al., 2004 Prasad et al., 2010; Cui et al.,	China	c.870-1G>C	870-1G>C
2020; Liu et al., 2015	Cillia		870-1670
Stewart and Pepper, 2016; Fathy	Egypt	c.902A>G (Tyr301Cys)	Y301C
et al., 2016; Sahami et al., 2014			
Norzila et al., 2005; Iso et al.,	Japan	c.91C >T	R31C
2019; Guo et al., 2018 Mayer Lacrosniere et al., 2021	Democratic	c.933C>G or c.933C>A(p.Phe311Leu)	F311del
hayer Eacroshiere et dl., 2021	Republic of	cosses of or cosses reprinted intering	131100
	the Congo		
Prasad et al., 2010; Cui et al.,	China	c.95T>C (p.Leu32Pro)	L32P
2020; Liu et al., 2015			
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	c.960_961insA	960_961insA
Prasad et al., 2010; Cui et al.,	China	c.960_961insA(p.Ser321IlefsX42)	S321Ifs*42
2020; Liu et al., 2015		,	
Wang et al., 2019;	Taiwan	c.989-992insA	989-992insA
Teeratakulpisarn et al., 2006;			
Lumpaopong et al., 2009 Kabir et al., 2020; Aziz et al.,	India	c.993C>G (p.lle331Met	1331
2017; Indika et al., 2019	mana	closse d'(places mat	1551
Mayer Lacrosniere et al., 2021	Ivory Coast	C.C233dup	C233dup
Dogru et al., 2020	Cyprus	CF 40-kb del 4–10	CF 40-kb del 4-10
AbdulWahab et al., 2021	Qatar	CF 40-kb del 4–10	CF 40-kb del 4–10
Van de Vosse et al., 2010; Ngukam et al., 2004	Thailand	F311L; PHE311LEU	F311L
Eskandarani, 2002	Bahrain	$His139 \rightarrow Leu$	548A >T
Stewart and Pepper, 2016; Fathy	Egypt	-	A544E
et al., 2016; Sahami et al., 2014			
Owusu et al., 2021	Ghana	-	CFTR-dele12
Stewart and Pepper, 2016; Fathy et al., 2016; Sahami et al., 2014	Egypt	-	R31H
Stewart and Pepper, 2016; Owusu	Rwanda	_	VS731
et al., 2021; Mutesa et al., 2009			
Stewart and Pepper, 2016; Owusu	Rwanda	p.E527E	E527E
et al., 2021; Mutesa et al., 2009 Kabir et al., 2020; Aziz et al.,	India		(210incC)
2017; Indika et al., 2019	India	-	(-219insG)
Ratbi et al., 2008; Estivill et al.,	Morocco	-	11TG
1997			
Ratbi et al., 2008; Estivill et al.,	Morocco	-	12TG
1997 Banjar et al., 2021; Banjar and	Saudi	_	1507del9
Angyalosi, 2015; AbdulWahab	Arabia		15074015
et al., 2021; Alibakhshi et al.,			
2008; Lopes-Pacheco, 2020			
Kabir et al., 2020; Aziz et al.,	India	-	1792insA
2017; Indika et al., 2019 Orgad et al., 2001; Mei-Zahav	Israel	_	2751 + 1insT
et al., 2018	131001		2751 + 111151
Stewart and Pepper, 2016; Mayer	Cameroon	-	326T>A
Lacrosniere et al., 2021			
Kabir et al., 2020; Aziz et al.,	India	-	4569H
2017; Indika et al., 2019 Banjar et al., 2021; Banjar and	Saudi	_	CFTR-dele19-21
Sanjar et an, 2021, Dulljal allu	Juudi		er m-uerer 3-21

Ref.	Country	Nucleotide/"Variant cDNA name (Variant protein name)	Legacy Name
Angyalosi, 2015; AbdulWahab et al., 2021; Alibakhshi et al., 2008; Lopes-Pacheco, 2020	Arabia		
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	-	CFTR-dele20
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	china	-	CFTR2,3(21 kb)
Wang et al., 2019; Teeratakulpisarn et al., 2006; Lumpaopong et al., 2009	Taiwan	-	G151T
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	-	I1295Ffs32
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	-	IVS-12T
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	-	IVS-17a
Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	-	IVS-5T
Mayer Lacrosniere et al., 2021 Prasad et al., 2010; Cui et al.,	Senegal China	-	IVS22 + 1G>A IVS4
2020; Liu et al., 2015 Rawashdeh and Manal, 2000	Jordan	_	IVS8-5T
Wang et al., 2019; Teeratakulpisarn et al., 2006; Lumpaopong et al., 2009	Taiwan	-	IVS8-5T
Ngukam et al., 2004	Indonesia	-	IVS8TG
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	-	L136Hfs*18
Al Balushi et al., 2021 Prasad et al., 2010; Cui et al.,	Oman China	-	L578delTA L666X
2020; Liu et al., 2015 Kunitomo et al., 1991; Ahn et al., 2005; Lin et al., 2019	South Korea	-	L78N
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	-	Q779X
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	-	R251Sfs * 6
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	-	R289X
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	-	R80N11Fs*11
Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	-	S212S
Dogru et al., 2020	Cyprus	-	S877A
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	-	T1219X
Prasad et al., 2010; Cui et al., 2020; Liu et al., 2015	China	-	T216X
Stewart and Pepper, 2016; Owusu et al., 2021; Mutesa et al., 2009	Rwanda	-	T577T
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	-	T66P
Norzila et al., 2005; Iso et al., 2019; Guo et al., 2018	Japan	-	V1381I
Wei et al., 2020; Indika et al., 2019	Pakistan	-	V456A
Kabir et al., 2020; Aziz et al., 2017; Indika et al., 2019	India	-	Y808YFs*10

are not suitable for the non-Caucasian populations, resulting in a false-negative test and difficulty in the detection of variants specific to these regions/countries (Mekki et al., 2021; Mayer Lacrosniere et al., 2021). This and the Caucasian allied misconception, might be some of the reasons behind the underdiagnosed or misdiagnosed CF cases in these concerned regions, leading to CF being diagnosed as another common phenocopy illness. The possibility of a false-negative result from panel kits and "the gold standard" sweat test in mild cases, would likely result in mortality due

to gradually unchecked damaged organs (Stewart and Pepper, 2016). Therefore, there is a need for a thorough investigation of CF prevalence to identify unique and novel genetic variants of CF, so a specific diagnostic kit could be developed for use within these regions.

A high number of early childhood death in these regions are suspected to be undocumented CF-related, most of which were associated with malnutrition and infectious disease complications (Zampoli et al., 2021; Sharma Pandey et al., 2019). However, this is unlikely in many countries in the West due to the establishment and implementation of CF national newborn screening (NBS) program, some dated back to 4 decades ago (Scotet et al., 2020). The CF NBS standard practice guidelines developed by the West can be adopted by countries in these regions. A crucial step towards finalizing plans towards the implementation of the NBS programs across the globe would aid in the development of cheaper specific drugs through countries' crowdfunding, research investment and collaboration as seen during the COVID-19 pandemic.

5. Conclusion

Initially thought to be a Caucasian disease, CF was earlier presumed non-existence or rarity of CF in the other parts of the world, particularly in Africa and Asia. This was predominantly due to the lack of CF data in the non-Caucasian population. However, with the recent surge in data and number of CFTR mutational variants reported from all parts of the world indicates an immediate need for an intervention to tackle the current challenges in the identification and management of CF in these regions. Therefore, we would like to recommend an intensive investigation and documentation of all genetic mutations and the implementation of CFTR (Clinical and Functional Translation of CFTR) database to analyse the heterogenous origin and distribution of CFTR mutations in these regions/countries. This will assist in the development of specific regional genetic screening and diagnostic tools for subsequent development of appropriate therapies and genetic counselling for families.

Authors Contributions

SA: Manuscript writing, funding, final approval of manuscript; KAB: Conception and design, manuscript writing, visualization; UA: visualization; CDM & NN manuscript reviewing and editing, and final approval of the manuscript. All authors have read and agreed to the final version of the manuscript.

Funding

This work was supported by Geran Putra (code no. GP/2018/9622200) from Universiti Putra Malaysia.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- Abdul-Qadir, A.G., Al-Musawi, B.M., Thejeal, R.F., Al-Omar, S., 2021. Molecular analysis of *CFTR* gene mutations among Iraqi cystic fibrosis patients. Egypt. J. Med. Hum. Genet. 22 (1), 45. https://doi.org/10.1186/s43042-021-00164-x.
- AbdulWahab, A., AlNaimi, A., Habra, B., Janahi, I., 2021. First report of the cystic fibrosis transmembrane conductance regulator mutation c.1521_1523delCTT (p. Phe508del) in two Qatari patients with cystic fibrosis. Qatar Med. J. 2021 (1), 24. https://doi.org/10.5339/qmj.2021.24.
- Ahn, K.M., Park, H.Y., Lee, J.H., Lee, M.G., Kim, J.H., Kang, I.J., Lee, S.I., 2005. Cystic fibrosis in Korean children:a case report identified by a quantitative pilocarpine iontophoresis sweat test and genetic analysis. J. Korean Med. Sci. 20 (1), 153– 157. https://doi.org/10.3346/jkms.2005.20.1.153.
- Al Balushi, S., Al Balushi, Y., Al Busaidi, M., Al Mutawa, L., 2021. A Novel Cystic Fibrosis Gene Mutation C.4242+1G>C in an Omani Patient: A Case Report. Oman Med. J. 36 (2), e243.
- Al Sa'idi, L., Al Busaidi, N., Al Bimani, M., 2021. Asp192Val, A Novel Mutation In 2 Omani Siblings With Cystic Fibrosis. A Case Report And Review Of Literature. J. Med. Case Rep. Case Ser. 2 (3). https://doi.org/10.38207/Jmcrcs20210053.

- Al-Baba, R., Zetoune, A.B., 2021. A retrospective study of cases diagnosed with cystic fibrosis at a single care center in Syria. Egypt J. Med. Hum. Genet. 22, 59. https:// doi.org/10.1186/s43042-021-00178-5.
- Alibakhshi, R., Kianishirazi, R., Cassiman, J.J., Zamani, M., Cuppens, H., 2008. Analysis of the CFTR gene in Iranian cystic fibrosis patients: identification of eight novel mutations. J. Cystic Fibrosis: Off. J. Eur. Cystic Fibrosis Soc. 7 (2), 102–109. https://doi.org/10.1016/j.jcf.2007.06.001.
- Alibakhshi, R., Mohammadi, A., Khamooshian, S., Kazeminia, M., Moradi, K., 2021. CFTR gene mutation spectrum among 735 Iranian patients with cystic fibrosis: A comprehensive systematic review. Pediatr. Pulmonol. 56 (12), 3644–3656. https://doi.org/10.1002/ppul.25647.
- Ashavaid, T.F., Raghavan, R., Dhairyawan, P., Bhawalkar, S., 2012. Cystic fibrosis in India: a systematic review. J. Assoc. Physicians India 60, 39–41.
- Aziz, D.A., Billoo, A.G., Qureshi, A., Khalid, M., Kirmani, S., 2017. Clinical and laboratory profile of children with Cystic Fibrosis: Experience of a tertiary care center in Pakistan. Pakistan J. Med. Sci. 33 (3), 554–559. https://doi.org/ 10.12669/pjms.333.12188.
- Banjar, H., Angyalosi, G., 2015. The road for survival improvement of cystic fibrosis patients in Arab countries. Int. J. Pediatr. Adolesc. Med. 2 (2), 47–58. https://doi. org/10.1016/j.ijpam.2015.05.006.
- Banjar, H., Al-Mogarri, I., Nizami, I., Al-Haider, S., AlMaghamsi, T., Alkaf, S., Al-Enazi, A., Moghrabi, N., 2021. Geographic distribution of cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in Saudi Arabia. Int. J. Pediatr. Adolesc. Med. 8 (1), 25–28. https://doi.org/10.1016/j. ijpam.2019.12.002.
- Bosch, B., Bilton, D., Sosnay, P., Raraigh, K.S., Mak, D., Ishiguro, H., Gulmans, V., Thomas, M., Cuppens, H., Amaral, M., De Boeck, K., 2017. Ethnicity impacts the cystic fibrosis diagnosis: A note of caution. J. Cystic Fibrosis: Off. J. Eur. Cystic Fibrosis Soc. 16 (4), 488–491. https://doi.org/10.1016/j.jcf.2017.01.016.
- Boussetta, K., Khalsi, F., Bahri, Y., Belhadj, I., Tinsa, F., Messaoud, T.B., Hamouda, S., 2018. Cystic fibrosis in Tunisian children: a review of 32 children. Afr. Health Sci. 18 (3), 664–670. https://doi.org/10.4314/ahs.v18i3.24.
- Cooney, A.L., McCray Jr, P.B., Sinn, P.L., 2018. Cystic Fibrosis Gene Therapy: Looking Back. Looking Forward. Genes 9 (11), 538. https://doi.org/ 10.3390/genes9110538.
- Cui, X., Wu, X., Li, Q., Jing, X., 2020. Mutations of the cystic fibrosis transmembrane conductance regulator gene in males with congenital bilateral absence of the vas deferens: Reproductive implications and genetic counseling (Review). Mol. Med. Rep. 22 (5), 3587–3596. https://doi.org/10.3892/mmr.2020.11456.
- De Boeck K. (2020). Cystic fibrosis in the year 2020: A disease with a new face. Acta paediatrica (Oslo, Norway : 1992), 109(5), 893–899. 10.1111/apa.15155.
- Des Georges, M., Mégarbané, A., Guittard, C., Carles, S., Loiselet, J., Demaille, J., Claustres, M., 1997. Cystic fibrosis in Lebanon: distribution of CFTR mutations among Arab communities. Hum. Genet. 100 (2), 279–283. https://doi.org/ 10.1007/s004390050505.
- Dogru, D., Çakır, E., Şişmanlar, T., Çobanoğlu, N., Pekcan, S., Cinel, G., Yalçın, E., Kiper, N., Şen, V., Şen, H.S., Ercan, Ö., Keskin, Ö., Eltan, S.B., Al Shadfan, L.M., Yazan, H., Altıntaş, D.U., Şaşihüseyinoğlu, Ş., Sapan, N., Çekiç, Ş., Çokuğraş, H., Özçelik, U., 2020. Cystic fibrosis in Turkey: First data from the national registry. Pediatr. Pulmonol. 55 (2), 541–548. https://doi.org/10.1002/ppul.24561.
- El-Seedy, A.S., Shafiek, H., Kitzis, A., Ladevèze, V., 2017. CFTR Gene Mutations in the Egyptian Population: Current and Future Insights for Genetic Screening Strategy. Front. Genet. 8, 37. https://doi.org/10.3389/fgene.2017.00037.
- El-Shanti, A., 2020. (2020) An Epidemiologic Study of Cystic Fibrosis in the Gaza Strip. J Community Med. 3 (1), 1023.
- Eskandarani, H.A., 2002. Cystic fibrosis transmembrane regulator gene mutations in Bahrain. J. Trop. Pediatr. 48 (6), 348–350. https://doi.org/10.1093/tropej/ 48.6.348.
- Essawi, O., Farraj, M., De Leeneer, K., Steyaert, W., De Pauw, K., De Paepe, A., Claes, K., Essawi, T., Coucke, P.J., 2015. Next generation sequencing to determine the cystic fibrosis mutation spectrum in Palestinian population. Dis. Markers 2015,. https://doi.org/10.1155/2015/458653 458653.
- Estivill, X., Bancells, C., Ramos, C., 1997. Geographic distribution and regional origin of 272 cystic fibrosis mutations in European populations. The Biomed CF Mutation Analysis Consortium. Hum. Mutat. 10 (2), 135–154. https://doi.org/ 10.1002/(SICI)1098-1004(1997)10:2<135::AID-HUMU6>3.0.CO;2-J.
- Farra, C., Menassa, R., Awwad, J., Morel, Y., Salameh, P., Yazbeck, N., Majdalani, M., Wakim, R., Yunis, K., Mroueh, S., Cabet, F., 2010. Mutational spectrum of cystic fibrosis in the Lebanese population. J. Cystic Fibrosis: Off. J. Eur. Cystic Fibrosis Soc. 9 (6), 406–410. https://doi.org/10.1016/j.jcf.2010.08.001.
- Fass, U.W., Al-Salmani, M., Bendahhou, S., Shivalingam, G., Norrish, C., Hebal, K., Clark, F., Heming, T., Al-Khusaiby, S., 2014. Defining a mutational panel and predicting the prevalence of cystic fibrosis in oman. Sultan Qaboos Univ. Med. J. 14 (3), e323–e329.
- Fathy, M., Ramzy, T., Elmonem, M.A., Amer, M., Zeidan, A., Hassan, F.A., Mehaney, D. A., 2016. Molecular screening of CFTR gene in Egyptian patients with congenital bilateral absence of the vas deferens: a preliminary study. Andrologia 48 (10), 1307–1312. https://doi.org/10.1111/and.12563.
- Fernald, G.W., Roberts, M.W., Boat, T.F., 1990. Cystic fibrosis: a current review. Pediatr. Dent. 12 (2), 72–78.
- Fredj, S.H., Fattoum, S., Chabchoub, A., Messaoud, T., 2011. First report of cystic fibrosis mutations in Libyan cystic fibrosis patients. Ann. Hum. Biol. 38 (5), 561– 563. https://doi.org/10.3109/03014460.2011.557090.
- Frossard, P. M., Girodon, E., Dawson, K. P., Ghanem, N., Plassa, F., Lestringant, G. G., & Goossens, M. (1998). Identification of cystic fibrosis mutations in the United

K. Abubakar Bobbo, U. Ahmad, D.-M. Chau et al.

Arab Emirates. Mutations in brief no. 133. Online. *Human mutation*, *11*(5), 412-413. 10.1002/(SICI)1098-1004(1998)11:5<412::AID-HUMU15>3.0.CO;2-O.

- Gouyat, L., Pascaud, O., Munck, A., Elion, J., Denamur, E., 1997. Novel mutation (A141D) in exon 4 of the CFTR gene identified in an Algerian patient. Hum. Mutat. 10 (1), 86–87. https://doi.org/10.1002/(SICI)1098-1004(1997)10:1<86:: AID-HUMU15>3.0.CO;2-W.
- Guo, X., Liu, K., Liu, Y., Situ, Y., Tian, X., Xu, K.F., Zhang, X., 2018. Clinical and genetic characteristics of cystic fibrosis in CHINESE patients: a systemic review of reported cases. Orphanet J. Rare Dis. 13 (1), 224. https://doi.org/10.1186/ s13023-018-0968-2.
- Hamouda, S., Fredj, S.H., Hilioui, S., Khalsi, F., Ameur, S.B., Bouguila, J., Boussoffara, R., Besbes, H., Ajmi, H., Mattoussi, N., Messaoud, T., Mehrezi, A., Hachicha, M., Boughamoura, L., Sfar, M.T., Gueddiche, N., Abroug, S., Becheur, S.B., Barsaoui, S., Tebib, N., Boussetta, K., 2020. Preliminary national report on cystic fibrosis epidemiology in Tunisia: the actual state of affairs. Afr. Health Sci. 20 (1), 444– 452. https://doi.org/10.4314/ahs.v20i1.51.
- Harendra de Silva, D.G., Lakkumar Fernando, A.J., Senaka Gunatilleke, M.D., 1994. Cystic fibrosis in Sri Lanka. Ceylon Med. J. 39 (1), 50–52.
- Herbert, J.S., Retief, A.E., 1992. The frequency of the delta F508 mutation in the cystic fibrosis genes of 71 unrelated South African cystic fibrosis patients. *South African medical journal =*. Suid-Afrikaanse tydskrif vir geneeskunde 82 (1), 13– 15.
- Indika, N., Vidanapathirana, D.M., Dilanthi, H.W., Kularatnam, G., Chandrasiri, N., Jasinge, E., 2019. Phenotypic spectrum and genetic heterogeneity of cystic fibrosis in Sri Lanka. BMC Med. Genet. 20 (1), 89. https://doi.org/10.1186/ s12881-019-0815-x.
- Iso, M., Suzuki, M., Yanagi, K., Minowa, K., Sakurai, Y., Nakano, S., Satou, K., Shimizu, T., Kaname, T., 2019. The *CFTR* gene variants in Japanese children with idiopathic pancreatitis. Hum. Genome Var. 6, 17. https://doi.org/10.1038/ s41439-019-0049-7.
- Iwasa, S., Fujiwara, M., Nagata, M., Watanabe, T., 2001. Three autopsied cases of cystic fibrosis in Japan. Pathol. Int. 51 (6), 467–472. https://doi.org/10.1046/ j.1440-1827.2001.01219.x.
- Izumikawa, K., Tomiyama, Y., Ishimoto, H., Sakamoto, N., Imamura, Y., Seki, M., Sawai, T., Kakeya, H., Yamamoto, Y., Yanagihara, K., Mukae, H., Yoshimura, K., Kohno, S., 2009. Unique mutations of the cystic fibrosis transmembrane conductance regulator gene of three cases of cystic fibrosis in Nagasaki, Japan. Internal medicine (Tokyo, Japan) 48 (15), 1327–1331. https://doi.org/ 10.2169/internalmedicine.48.2078.
- Jarjour, R.A., Al-Berrawi, S., Ammar, S., Majdalawi, R., 2018. Spectrum of cystic fibrosis mutations in Syrian patients. Minerva Pediatr. 70 (2), 159–164. https:// doi.org/10.23736/S0026-4946.17.04280-3.
- Jung, H., Ki, C.S., Koh, W.J., Ahn, K.M., Lee, S.I., Kim, J.H., Ko, J.S., Seo, J.K., Cha, S.I., Lee, E.S., Kim, J.W., 2011. Heterogeneous spectrum of CFTR gene mutations in Korean patients with cystic fibrosis. Korean J. Lab. Med. 31 (3), 219–224. https://doi.org/10.3343/kjlm.2011.31.3.219.
- Kabir, A. L., Roy, S., Habib, R. B., Anwar, K. S., Mollah, M., Amin, R., Mridha, A. A., Majumder, J. U., Hossain, M. D., Haque, N., Ahmed, S., & Chisti, M. J. (2020). Cystic Fibrosis Diagnosed Using Indigenously Wrapped Sweating Technique: First Large-Scale Study Reporting Socio-Demographic, Clinical, and Laboratory Features among the Children in Bangladesh A Lower Middle Income Country. *Clobal pediatric health*, 7, 2333794X20967585. 10.1177/2333794X20967585.

Katznelson, D., Ben-Yishay, M., 1978. Cystic fibrosis in Israel: clinical and genetic aspects. Isr. J. Med. Sci. 14 (2), 204–211.
Kawase, M., Ogawa, M., Hoshina, T., Kojiro, M., Nakakuki, M., Naruse, S., Ishiguro, H.,

- Kawase, M., Ogawa, M., Hoshiha, I., Kojiro, M., Nakakuki, M., Naruse, S., Isniguro, H., Kusuhara, K., 2022. Case Report: Japanese Siblings of Cystic Fibrosis With a Novel Large Heterozygous Deletion in the *CFTR* Gene. Front. Pediatr. 9, https:// doi.org/10.3389/fped.2021.800095 800095.
- Koh, W.J., Ki, C.S., Kim, J.W., Kim, J.H., Lim, S.Y., 2006. Report of a Korean patient with cystic fibrosis, carrying Q98R and Q220X mutations in the CFTR gene. J. Korean Med. Sci. 21 (3), 563–566. https://doi.org/10.3346/jkms.2006.21.3.563.
- Kollberg, H., 1986. Cystic fibrosis in Kuwait. J. Trop. Pediatr. 32 (6), 293–294. https://doi.org/10.1093/tropej/32.6.293.
- Kularatnam, G. A. M., Warawita, D., Jayasena, S., Nadarajah, S., Jasinge, E., Mendis, D., Kennedy, H., Florkowski, C., & George, P. (2015) . Cystic fibrosis in a Sri Lankan infant, confirmed by genotyping: implications for future diagnosis and service provision. Journal of the Postgraduate Institute of Medicine 2015;2:E171-3doi: http://dx.doi.org/jpgim.10.4038/jpgim.8046.

Kunitomo, K., Komi, N., Kawahito, M., Miura, M., Sasaki, K., 1991. Cystic fibrosis in Japan. Tokushima J. Exp. Med. 38 (3–4), 85–89.
Lin, H. C., Huang, S. W., Lu, Y. C., Wang, C. C. (2019). Early diagnosis of a case of

- Lin, H. C., Huang, S. W., Lu, Y. C., Wang, C. C. (2019). Early diagnosis of a case of infantile cystic fibrosis and review of literature in Taiwan. J Med Sci (serial online) https://www.jmedscindmc.com/text.asp?2019/39/2/90/242736.
- Liu, Y., Wang, L., Tian, X., Xu, K.F., Xu, W., Li, X., Yue, C., Zhang, P., Xiao, Y., Zhang, X., 2015. Characterization of gene mutations and phenotypes of cystic fibrosis in Chinese patients. Respirology (Carlton Vic.), 20(2), 312–318. https://doi.org/ 10.1111/resp.12452.
- Liu, K., Xu, W., Xiao, M., Zhao, X., Bian, C., Zhang, Q., Song, J., Chen, K., Tian, X., Liu, Y., Xu, K.F., Zhang, X., 2020. Characterization of clinical and genetic spectrum of Chinese patients with cystic fibrosis. Orphanet J. Rare Dis. 15 (1), 150. https:// doi.org/10.1186/s13023-020-01393-w.
- Lopes-Pacheco, M., 2020. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front. Pharmacol. 10, 1662. https://doi.org/ 10.3389/fphar.2019.01662.

- Loumi, O., Ferec, C., Mercier, B., Creff, J., Fercot, B., Denine, R., Grangaud, J.P., 2008. CFTR mutations in the Algerian population. J. Cystic Fibrosis: Off. J. Eur. Cystic Fibrosis Soc. 7 (1), 54–59. https://doi.org/10.1016/j.jcf.2007.04.004.
- Lumpaopong, A., Thirakhupt, P., Srisuwan, K., Chulamokha, Y., 2009. Rare F311L CFTR gene mutation in a child presented with recurrent electrolyte abnormalities and metabolic alkalosis: case report. *Journal of the Medical Association of Thailand* =. Chotmaihet thangphaet 92 (5), 694–698.
- Luu, K., Chilvers, M., 2011. Case 1: Chronic cough in a Vietnamese adolescent: Should we be sweating? Paediatr. Child Health 16 (8), 465–466. https://doi.org/ 10.1093/pch/16.8.465a.
- Macek Jr, M., Mackova, A., Hamosh, A., Hilman, B.C., Selden, R.F., Lucotte, G., Friedman, K.J., Knowles, M.R., Rosenstein, B.J., Cutting, G.R., 1997. Identification of common cystic fibrosis mutations in African-Americans with cystic fibrosis increases the detection rate to 75%. Am. J. Hum. Genet. 60 (5), 1122–1127.
- Maiuri, L., Raia, V., Kroemer, G., 2017. Strategies for the etiological therapy of cystic fibrosis. Cell Death Differ. 24 (11), 1825–1844. https://doi.org/10.1038/ cdd.2017.126.
- Marson, F., Bertuzzo, C.S., Ribeiro, J.D., 2016. Classification of CFTR mutation classes. Lancet Respir. Med. 4 (8), e37–e38. https://doi.org/10.1016/S2213-2600(16) 30188-6.
- Masekela, R., Zampoli, M., Westwood, A.T., White, D.A., Green, R.J., Olorunju, S., Kwofie-Mensah, M., 2013. Phenotypic expression of the 3120+1G>A mutation in non-Caucasian children with cystic fibrosis in South Africa. J. Cystic Fibrosis: Off. J. Eur. Cystic Fibrosis Soc. 12 (4), 363–366. https://doi.org/10.1016/j. jcf.2012.11.003.
- Mathew, A., Dirawi, M., Abou Tayoun, A., Popatia, R., 2021. A Rare Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mutation Associated With Typical Cystic Fibrosis in an Arab Child. Cureus 13 (2), e13526.
- Mayer Lacrosniere, S., Gerardin, M., Clainche-Viala, L.L., Houdouin, V., 2021. Phenotypic Presentations of Cystic Fibrosis in Children of African Descent. Genes 12 (3), 458. https://doi.org/10.3390/genes12030458.
- Mehta, G., Macek Jr, M., Mehta, A., European Registry Working Group, 2010. Cystic fibrosis across Europe: EuroCareCF analysis of demographic data from 35 countries. J. Cystic Fibrosis: Off. J. Eur. Cystic Fibrosis Soc. 9 (Suppl 2), S5–S21. https://doi.org/10.1016/j.jcf.2010.08.002.
- Mei-Zahav, M., Durie, P., Zielenski, J., Solomon, M., Tullis, E., Tsui, L.C., Corey, M., 2005. The prevalence and clinical characteristics of cystic fibrosis in South Asian Canadian immigrants. Arch. Dis. Child. 90 (7), 675–679. https://doi.org/ 10.1136/adc.2003.042614.
- Mei-Zahav, M., Stafler, P., Senderowitz, H., Bentur, L., Livnat, G., Shteinberg, M., Orenstein, N., Bazak, L., Prais, D., Levine, H., Gur, M., Khazanov, N., Simhaev, L., Eliyahu, H., Cohen, M., Wilschanski, M., Blau, H., Mussaff, H., 2018. The Q359K/ T360K mutation causes cystic fibrosis in Georgian Jews. J. Cystic Fibrosis: Off. J. Eur. Cystic Fibrosis Soc. 17 (5), e41–e45. https://doi.org/10.1016/j. icf.2018.06.008.
- Mekki, C., Aissat, A., Mirlesse, V., Mayer Lacrosniere, S., Eche, E., Le Floch, A., Whalen, S., Prud'Homme, C., Remus, C., Funalot, B., Castaigne, V., Fanen, P., de Becdelièvre, A., 2021. Prenatal Ultrasound Suspicion of Cystic Fibrosis in a Multiethnic Population: Is Extensive CFIR Genotyping Needed? Genes 12 (5):670. https://doi.org/10.3390/genes12050670.
- Messaoud, T., Bel Haj Fredj, S., Bibi, A., Elion, J., Férec, C., Fattoum, S., 2005. Epidémiologie moléculaire de la mucoviscidose en Tunisie [Molecular epidemiology of cystic fibrosis in Tunisia]. Ann. Biol. Clin. 63 (6), 627–630.
- Mutesa, L., Azad, A.K., Verhaeghe, C., Segers, K., Vanbellinghen, J.F., Ngendahayo, L., Rusingiza, E.K., Mutwa, P.R., Rulisa, S., Koulischer, L., Cassiman, J.J., Cuppens, H., Bours, V., 2009. Genetic analysis of Rwandan patients with cystic fibrosis-like symptoms: identification of novel cystic fibrosis transmembrane conductance regulator and epithelial sodium channel gene variants. Chest 135 (5), 1233– 1242. https://doi.org/10.1378/chest.08-2246.
- Nam, M.H., Hijikata, M., Tuan, L.A., Lien, L.T., Shojima, J., Horie, T., Nakata, K., Matsushita, I., Ohashi, J., Tokunaga, K., Keicho, N., 2005. Variations of the CFTR gene in the Hanoi-Vietnamese. Am. J. Med. Genet. A 136 (3), 249–253. https:// doi.org/10.1002/ajmg.a.30826.
- Ngiam, N.S., Chong, S.S., Shek, L.P., Goh, D.L., Ong, K.C., Chng, S.Y., Yeo, G.H., Goh, D. Y., 2006. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in Asians with chronic pulmonary disease: a pilot study. J. Cystic Fibrosis: Off. J. Eur. Cystic Fibrosis Soc. 5 (3), 159–164. https://doi.org/10.1016/j. icf.2006.02.002.
- Ngukam, A., Jacquemont, M.L., Souville, I., Viel, M., Beldjord, C., Hubert, D., Hughes, J. N., Bienvenu, T., 2004. A novel missense mutation A1081P in the cystic fibrosis transmembrane conductance regulator (CFTR) gene identified in a Laotian patient with congenital bilateral absence of the vas deferens. J. Trop. Pediatr. 50 (4), 239–240. https://doi.org/10.1093/tropej/50.4.239.
- Norzila, M.Z., Norrashidah, A.W., Rusanida, A., Chan, P.W., Azizi, B.H., 2005. Cystic fibrosis in Malaysian children. Med. J. Malaysia 60 (1), 54–61.
- Oguonu, T., Adaeze Ayuk, C., Edelu, B.O., et al., 2014. Pattern of respiratory diseases in children presenting to the paediatric emergency unit of the University of Nigeria Teaching Hospital, Enugu: a case series report, BMC Pulm. Med. 14, 101. https://doi.org/10.1186/1471-2466-14-101.
- Orgad, S., Neumann, S., Loewenthal, R., Netanelov-Shapira, I., Gazit, E., 2001. Prevalence of cystic fibrosis mutations in Israeli Jews. Genet. Test. 5 (1), 47–52. https://doi.org/10.1089/109065701750168725.
- Owusu, S.K., Morrow, B.M., White, D., Klugman, S., Vanker, A., Gray, D., Zampoli, M., 2020. Cystic fibrosis in black African children in South Africa: a case control study. J. Cystic Fibrosis: Off. J. Eur. Cystic Fibrosis Soc. 19 (4), 540–545. https:// doi.org/10.1016/j.jcf.2019.09.007.

K. Abubakar Bobbo, U. Ahmad, D.-M. Chau et al.

- Owusu, S.K., Obeng-Koranteng, G., Odai, S.L., Kilba, M.C.F., Abbeyguaye, P., Onwona-Agyeman, K., Asamoah-Okyere, S., Oduah-Odoom, P.M., Adjetey, N.D., Bonus, K., Lawerteh, S.E., Afidemnyo, A., Zampoli, M., 2021. Cystic fibrosis in two Ghanaian Children. J. Pan Afr. Thoracic Soc. 2 (3), 167–170. https://doi.org/10.25259/ JPATS_10_2021.
- Padilla, C.D., Therrell Jr, B.L., Alcausin, M., Chiong, M., Abacan, M., Reyes, M., Jomento, C.M., Dizon-Escoreal, M., Canlas, M., Abadingo, M.E., Posecion, J., Abarquez, C.G., Andal, A.P., Elizaga, A., Halili-Mendoza, B.C., Otayza, M., Millington, D.S., 2022. Successful Implementation of Expanded Newborn Screening in the Philippines Using Tandem Mass Spectrometry. Int. J. Neonatal Screen. 8 (1), 8. https://doi.org/10.3390/ijns8010008.
- Paodoa, C., Goldman, A., Jenkins, T., Ramsay, M., 1999. Cystic fibrosis carrier frequencies in populations of African origin. J. Med. Genet. 36 (1), 41–44.
- Prasad, R., Sharma, H., Kaur, G., 2010. Molecular basis of cystic fibrosis disease: an Indian perspective. Indian J. Clin. Biochem.: IJCB 25 (4), 335–341. https://doi. org/10.1007/s12291-010-0091-1.
- Quint, A., Lerer, I., Sagi, M., Abeliovich, D., 2005. Mutation spectrum in Jewish cystic fibrosis patients in Israel: implication to carrier screening. Am. J. Med. Genet. A 136 (3), 246–248. https://doi.org/10.1002/ajmg.a.30823.
- Ratbi, I., Génin, E., Legendre, M., Le Floch, A., Costa, C., Cherkaoui-Deqqaqi, S., Goossens, M., Sefiani, A., Girodon, E., 2008. Cystic fibrosis carrier frequency and estimated prevalence of the disease in Morocco. J. Cystic Fibrosis: Off. J. Eur. Cystic Fibrosis Soc. 7 (5), 440–443. https://doi.org/10.1016/j.jcf.2007.12.006.
- Rawashdeh, M., Manal, H., 2000. Cystic fibrosis in Arabs: a prototype from Jordan. Ann. Trop. Paediatr. 20 (4), 283–286. https://doi.org/10.1080/ 02724936.2000.11748148.
- Sahami, A., Alibakhshi, R., Ghadiri, K., Sadeghi, H., 2014. Mutation Analysis of Exons 10 and 17a of CFTR Gene in Patients with Cystic Fibrosis in Kermanshah Province, Western Iran. J. Reprod. Infertility 15 (1), 49.
- Scotet, V., Gutierrez, H., Farrell, P.M., 2020. Newborn Screening for CF across the Globe-Where Is It Worthwhile? Int. J. Neonatal Screen. 6 (1), 18. https://doi.org/ 10.3390/ijns6010018.
- Sediki, F.Z., Radoui, A., Boudjema, A., Abdi, M., Zemani-Fodil, F., et al., 2016. Spectrum of CFTR Mutations in the Algerian Population: Molecular and Computational Analysis. J. Genet. Disor. Genet. Rep. 5, 1. https://doi.org/ 10.4172/2327-5790.1000130.
- Sharma Pandey, A., Joshi, S., Rajbhandari, R., Kansakar, P., Dhakal, S., Fingerhut, R., 2019. Newborn Screening for Selected Disorders in Nepal: A Pilot Study. Int. J. Neonatal Screen. 5 (2), 18. https://doi.org/10.3390/ijns5020018.
- Siddique, M.A., Khan, K., Bera, A., Ghorai, S., Mallik, J., Sarkar, S., 2018. Cystic fibrosis with Severe Anaemia and Hypoproteinaemia. J. Nepal Paediatr. Soc. 38 (2), 118– 121. https://doi.org/10.3126/jnps.v38i2.19196.
- Singh, M., Rebordosa, C., Bernholz, J., Sharma, N., 2015. Epidemiology and genetics of cystic fibrosis in Asia: In preparation for the next-generation treatments. Respirology (Carlton, Vic) 20 (8), 1172–1181. https://doi.org/10.1111/ resp.12656.
- Siryani, I., Jama, M., Rumman, N., Marzouqa, H., Kannan, M., Lyon, E., Hindiyeh, M., 2015. Distribution of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mutations in a Cohort of Patients Residing in Palestine. PLoS One 10 (7), e0133890.
- Sohn, Y.B., Ko, J.M., Jang, J.Y., Seong, M.W., Park, S.S., Suh, D.I., Ko, J.S., Shin, C.H., 2019. Deletion of exons 16–17b of CFTR is frequently identified in Korean patients with cystic fibrosis. Eur. J. Med. Genet. 62, (8). https://doi.org/10.1016/ j.ejmg.2019.103681 103681.
- Stafler, P., Mei-Zahav, M., Wilschanski, M., Mussaffi, H., Efrati, O., Lavie, M., Shoseyov, D., Cohen-Cymberknoh, M., Gur, M., Bentur, L., Livnat, G., Aviram, M., Alkrinawi, S., Picard, E., Prais, D., Steuer, G., Inbar, O., Kerem, E., Blau, H., 2016. The impact of a national population carrier screening program on cystic fibrosis birth rate and age at diagnosis: Implications for newborn screening. J. Cystic Fibrosis: Off. J. Eur. Cystic Fibrosis Soc. 15 (4), 460–466. https://doi.org/10.1016/ j.jcf.2015.08.007.
- Stewart, C., Pepper, M., 2016. Cystic fibrosis on the African continent. Genet Med 18, 653–662. https://doi.org/10.1038/gim.2015.157.

- Super, M., 1975. Cystic fibrosis in the South West African Afrikaner. An example of population drift, possibly with heterozygote advantage. S. Afr. Med. J. = Suid-Afrikaanse tydskrif vir geneeskunde 49 (20), 818–820.
- Suwanjutha, S., Huang, N.N., Wattanasirichaigoon, D., Sura, T., Harris, A., Macek Jr, M., 1998. Case report of a Thai male cystic fibrosis patinet with the 1898+1G – >T splicing mutation in the CFTR gene: a review of East Asian cases. Mutations in brief no. 196. Online. Hum. Mutation 12 (5), 361.
- Teeratakulpisarn, J., Kosuwon, P., Srinakarin, J., Panthongviriyakul, C., Sutra, S., 2006. Cystic fibrosis in three northeast Thai infants is CF really a rare disease in the Thai population? J. Med. Assoc. Thailand = Chotmaihet thangphaet 89 (10), 1756–1761.
- Tian, X., Liu, Y., Yang, J., Wang, H., Liu, T., Xu, W., Li, X., Zhu, Y., Xu, K.F., Zhang, X., 2016. p. G970D is the most frequent CFTR mutation in Chinese patients with cystic fibrosis. Hum. Genome Variat. 3, 15063–15071. https://doi.org/10.1038/ hgv.2015.63.
- Tomoda, Y., Arai, S., Kawaguchi, K., Nabeshima, S., Orihashi, T., Kihara, Y., Kouzuma, R., Tanaka, K., 2018. Diagnosis of cystic fibrosis in an adult Japanese male. J. Gen. Fam. Med. 19 (2), 57–58. https://doi.org/10.1002/jgf2.151.
- Van de Vosse, E., de Visser, A.W., Al-Attar, S., Vossen, R., Ali, S., van Dissel, J.T., 2010. Distribution of CFTR variations in an Indonesian enteric fever cohort. Clin. Infect. Dis. 50 (9), 1231–1237. https://doi.org/10.1086/651598.
- Van Rensburg, J., Alessandrini, M., Stewart, C., Pepper, M.S., 2018. Cystic fibrosis in South Africa: A changing diagnostic paradigm. S. Afr. Med. J. = Suid-Afrikaanse tydskrif vir geneeskunde 108 (8), 624–628. https://doi.org/10.7196/SAMJ.2018. v108i8.13225.
- Wakabayashi-Nakao, K., Yu, Y., Nakakuki, M., Hwang, T.C., Ishiguro, H., Sohma, Y., 2019. Characterization of Δ(G970-T1122)-CFTR, the most frequent CFTR mutant identified in Japanese cystic fibrosis patients. J. Physiol. Sci.: JPS 69 (1), 103–112. https://doi.org/10.1007/s12576-018-0626-4.
- Wang, Y.Q., Hao, C.L., Jiang, W.J., Lu, Y.H., Sun, H.Q., Gao, C.Y., Wu, M., 2019. c.753_754delAG, a novel CFTR mutation found in a Chinese patient with cystic fibrosis: A case report and review of the literature. World J. Clin. Cases 7 (15), 2110–2119. https://doi.org/10.12998/wjcc.v7.i15.2110.
- Wei, T., Sui, H., Su, Y., Cheng, W., Liu, Y., He, Z., Ji, Q., Xu, C., 2020. Research advances in molecular mechanisms underlying the pathogenesis of cystic fibrosis: From technical improvement to clinical applications (Review). Mol. Med. Rep. 22 (6), 4992–5002. https://doi.org/10.3892/mmr.2020.11607.
- Yamashiro, Y., Shimizu, T., Oguchi, S., Shioya, T., Nagata, S., Ohtsuka, Y., 1997. The estimated incidence of cystic fibrosis in Japan. J. Pediatr. Gastroenterol. Nutr. 24 (5), 544–547. https://doi.org/10.1097/00005176-199705000-00010.
- Yang, S.Y., Lee, K.S., Cha, M.J., Kim, T.J., Kim, T.S., Yoon, H.J., 2017. Chest CT Features of Cystic Fibrosis in Korea: Comparison with Non-Cystic Fibrosis Diseases. Korean J. Radiol. 18 (1), 260–267. https://doi.org/10.3348/kjr.2017.18.1.260.
- Yiallouros, P.K., Matthaiou, A.M., Anagnostopoulou, P., Kouis, P., Libik, M., Adamidi, T., Eleftheriou, A., Demetriou, A., Ioannou, P., Tanteles, G.A., Costi, C., Fanis, P., Macek, M., Neocleous, V., Phylactou, L.A., 2021. Demographic characteristics, clinical and laboratory features, and the distribution of pathogenic variants in the CFTR gene in the Cypriot cystic fibrosis (CF) population demonstrate the utility of a national CF patient registry. Orphanet J. Rare Dis. 16 (1), 409. https:// doi.org/10.1186/s13023-021-02049-z.
- Zaidan, A., Salman, J., Arif, H., 2020. The spectrum of mutations analysis of exons 10 and 17a of CFTR gene in Iraqi patients with cystic fibrosis disease. Biochem Cell Arch 20 (2), 6177–6181.
- Zampoli, M., Verstraete, J., Frauendorf, M., Kassanjee, R., Workman, L., Morrow, B.M., Zar, H.J., 2021. Cystic fibrosis in South Africa: spectrum of disease and determinants of outcome. ERJ Open Res. 7 (3), 00856–02020. https://doi.org/ 10.1183/23120541.00856-2020.
- Zheng, B., Cao, L., 2017. Differences in gene mutations between Chinese and Caucasian cystic fibrosis patients. Pediatr. Pulmonol. 52 (3), E11–E14. https:// doi.org/10.1002/ppul.23539.
- Zilfalil, B.A., Sarina, S., Liza-Sharmini, A.T., Oldfield, N.J., Stenhouse, S.A., 2006. Detection of F508del mutation in cystic fibrosis transmembrane conductance regulator gene mutation among Malays. Singapore Med. J. 47 (2), 129–133.