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Abstract
This review examines high-quality research evidence that synthesises the effects of extreme heat on human health in tropical 
Africa. Web of Science (WoS) was used to identify research articles on the effects extreme heat, humidity, Wet-bulb Globe 
Temperature (WBGT), apparent temperature, wind, Heat Index, Humidex, Universal Thermal Climate Index (UTCI), heat-
wave, high temperature and hot climate on human health, human comfort, heat stress, heat rashes, and heat-related morbidity 
and mortality. A total of 5, 735 articles were initially identified, which were reduced to 100 based on a set of inclusion and 
exclusion criteria. The review discovered that temperatures up to 60°C have been recorded in the region and that extreme heat 
has many adverse effects on human health, such as worsening mental health in low-income adults, increasing the likelihood of 
miscarriage, and adverse effects on well-being and safety, psychological behaviour, efficiency, and social comfort of outdoor 
workers who spend long hours performing manual labour. Extreme heat raises the risk of death from heat-related disease, 
necessitating preventative measures such as adaptation methods to mitigate the adverse effects on vulnerable populations 
during hot weather. This study highlights the social inequalities in heat exposure and adverse health outcomes.
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Introduction

Most studies on heat-human health have focused on high 
income countries (HICs) compared to low- and middle-
income countries (LMICs), for which few studies have 
been conducted, particularly in tropical Africa (Basu 2009; 
Green et al. 2019; Ebi et al. 2021; Kotharkar and Ghosh 
2022). High temperatures can cause a rise in core body 
temperature and heart rate and lead to heat stress, heat 
stroke and, in extreme cases, death. Individuals with heart 
disease, obesity, or respiratory conditions are more vulner-
able to heat stress (Donaldson et al. 2003; Kenney et al. 
2014; Rahman and Adnan 2023). Among the effects of high 
temperatures on human health are heat exhaustion, dehydra-
tion, respiratory issues, cardiovascular strain, skin diseases, 
mental health issues, and electrolyte imbalance (Basu and 
Samet 2002; Gosling et al. 2009; Hajat and Kosatky 2010; 
Gabriel and Endlicher 2011; Hondula et al. 2012; Ma et al. 
2014; Alcoforado et al. 2015; Son et al. 2016; Mora et al. 

2017). High temperatures not only exacerbate existing heat-
related health conditions, leading to organ failure and mor-
tality, but also cause a range of harmful effects such as an 
increase in violent crimes (Sanz-Barbero et al. 2018), fatal 
road accidents (Wu et al. 2018), and stress on ambulance 
services (Dolney and Sheridan 2006; Cheng et al. 2016; 
Guo 2017). Rising temperatures also increase electricity 
and water demand (Hatvani-Kovacs et al. 2016), impacting 
infrastructure, water quality, open spaces, and overall live-
ability in urban areas (Klok and Kluck 2018).

The effects of heat on human health are further exacer-
bated by environmental, socioeconomic, demographic, physi-
ological and behavioural factors. For instance, urban areas 
with high population density, limited green space, and exten-
sive artificial impervious surfaces (AIS) can be warmer than 
surrounding areas (Myint et al. 2013; Chen et al. 2022a, b; 
Rajagopal et al. 2023). Economic constraints can limit access 
to cooling systems, adequate hydration, and healthcare ser-
vices, e.g. inadequate access to air conditioning and other 
cooling methods can increase human vulnerability during 
extreme heat. Living in poorly ventilated homes can exac-
erbate the harmful effects of extreme heat (Thomson et al. 
2019). Limited access to healthcare can hinder the treatment 
of heat-related illnesses; the effectiveness of public health 
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interventions and heatwave warning systems plays a crucial 
role in exacerbating the harmful effects of extreme heat (Fos-
ter et al. 2020; Périard et al. 2021; Hess et al. 2023). Outdoor 
workers, such as those in construction, mining, and agricul-
ture, are more exposed to high temperatures (Jay et al. 2021; 
He et al. 2023). Isolated individuals may lack assistance dur-
ing heat waves (Kenny et al. 2020; Habibi et al. 2023). Older 
populations and young children are more sensitive to heat 
due to less effective thermoregulation (Tsuzuki 2023). A lack 
of awareness of heat risks can lead to inadequate preventive 
measures (Jessel et al. 2019). Cultural norms and practices, 
for instance, clothing choices, might affect how individuals 
respond to heat (Sovacool et al. 2021).

The occurrence of hot days in tropical Africa has been 
increasing since the 1980s because of increasing green-
house gas (GHG) emissions, which continue to alter the 
region's summer temperatures (Mahlstein et al. 2011; Har-
rington et al. 2017; Herold et al. 2017; Ntoumos et al. 
2022). Temperatures in tropical Africa are frequently 
near the upper limit of human comfort (Sherwood and 
Huber 2010). For example, in 2010, extreme tempera-
ture incidents of 47.6 °C and 48.2 °C were recorded in 
Faya-Largeau, Chad Republic, and Bilma, Niger Republic, 
respectively (World Meteorological Organization 2016). 
Furthermore, between 1989 and 2009, tropical Africa 
recorded 40 to 50 heat waves annually (Cook and Vizy 
2012; Iyakaremye et al. 2021). The Nigerian Meteorolog-
ical Agency (2021) recently reported extreme heatwave 
events of 50 °C in the Northern-eastern region of Nigeria. 
The Emergency event database (EM-DAT 2023) reports an 
incident with an extreme temperature of 60 °C in Nigeria 
which killed 60 people. (Table 1).

The effects of extreme heat on human health in LMICs 
are often exacerbated by socioeconomic and demographic 
characteristics of the population, for example, poverty, lit-
eracy, infants, and aged population (Oluwafemi et al. 2023; 
Nyadanu et al. 2023). The IPCC (2022) reported that LMICs 
had limited adaptive capacity to extreme heat due to scarce 
resources, fragile political institutions, and socio-cultural 
practices. More research on heat-human health in tropical 
Africa is needed (Omonijo et al. 2013; Agan 2017; Leal 
Filho et al. 2018; Niu et al. 2021) to identify the require-
ment for enhancing the resilience of the region to climate 
change-enhanced extreme heat events. Recent studies indi-
cate that some HICs have observed a decline in the sensitiv-
ity of health outcomes to extreme heat, which implies an 
increase in adaptive capacity to extreme heat (Coates et al. 
2014; Bobb et al. 2014; Sheridan and Allen 2018; Laranjeira 
et al. 2021). Unlike HICs, vulnerability to extreme heat in 
LMICs is on the rise due to their increase in sensitivity and 
low adaptive capacity to extreme heat (Hajat et al. 2010; 
Azhar et al. 2017; Green et al. 2019; Ncongwane et al. 2021; 
Chen et al. 2022a, b). This review aims to summarise the 

peer-reviewed literature on the relationship between extreme 
heat and human health in tropical Africa.

Material and methods

The regional focus of the review

Tropical regions lie between latitudes 23.5° north and south 
of the equator. Tropical Africa consists of 48 countries that 
make up five sub-regions: West Africa (16 countries), East 
Africa (9), Central Africa (10), part of Southern Africa (7), 
the Indian Ocean islands, and Madagascar (6). Figure 1 
presents the sub-regions and member countries of tropical 
Africa. The Köppen-Geiger system classified the climate 
of tropical Africa as Type ‘A,’ characterised by constant, 
elevated temperatures and generally humid (Af) with high 
amounts of precipitation because of their closeness to the 
equator (Burkart et al. 2014). However, there is the emer-
gence of drier climatic areas with declining rainfall towards 
latitude 23.5° north and south away from the equator due to 
the influence of the subtropical high-pressure system (Aw) 
and transition from type ‘A’ to type ‘B’ arid climates. Gen-
erally, regions at high altitudes have lower temperatures, 
typical of warm temperate-type ‘C’ climates (Kottek et al. 
2006).

The weather and climate of tropical Africa varies with 
geographical location and is influenced by topography, prox-
imity to large water bodies and movements of the Intertropi-
cal Convergence Zone (ITCZ; Odekunle et al. 2005; Olu-
wafemi et al. 2023). There are two major seasons in tropical 
Africa: rainy and dry seasons. The rainy season in Central 
and West Africa, e.g. Nigeria and Congo, start from April 
to October, with annual rainfall of 1,000—2,500 mm. The 
dry season lasts from November to March (Adeniyi and 
Oyekola 2017; Odekunle et al. 2005; Adegebo 2022). East 
Africa, e.g., Kenya and Ethiopia, is characterised by two 
rainy seasons—the long rainy season from March to May 
and the short rainy season from October to December, with 
an average rainfall of 500—1,500 mm. The dry season in 
this region occurs between the two rainy seasons and after 
the short rains (Camberlin and Philippon 2002; Cattani et al. 
2018). Generally, the dry season is characterised by lower 
humidity, less cloud cover, and little or no rainfall. Tropical 
Africa generally experiences a warm climate, with tempera-
tures ranging from 25°C to 30°C (Odekunle et al. 2005). 
However, there are temperature variations; for instance, 
highlands, e.g., Ethiopian highlands, have lower tempera-
tures, below 20°C (Camberlin and Philippon 2002). Coastal 
regions have more consistent temperatures, influenced by 
oceanic currents, with an average monthly temperature of 
31◦C and 32◦C in February and March and reaching their 
lowest temperature of 27◦C to 28◦C in July and August 
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(Oluwafemi et al. 2023). The Sahelian Region at the north-
ern fringes can experience more extreme temperatures over 
40°C in March and April due to its proximity to the Sahara 
Desert (Agada and Yakubu 2022).

Search approach

Literature searches were performed in the Web of Sci-
ence (WoS) to identify research articles on the association 
between extreme heat and human health in tropical Africa. 
The search terms were narrowed to peer-reviewed articles 
written in English. 5,735 publications were initially identi-
fied. Searches included all publications in the WoS data-
base up to and including December 2023. Table 2 shows 
the keywords and search terms that were used to search “All 
fields” in the WoS database, which included health outcomes 
that are commonly referred to in heat health studies (e.g. 
human health, heat-related mortality) and several climatic 
and biometeorological climate variables that broadly cover 
the totality of the effect of weather and climate associated 
with extreme heat on temperature-related health by account-
ing for temperature, humidity, wind speed and radiation (e.g. 
high temperature, Wet Bulb Globe Temperature (WBGT), 
Universal Thermal Climate Index (UTCI); see Gosling et al. 
(2014) for definitions).

A preliminary scan of the articles identified after con-
ducting the searches listed in Table 2 was undertaken to 
eliminate studies that examine non-human impacts, such as 
those on plants and animals. A manual check on the articles' 
titles, abstracts, and main text was undertaken for further 
screening using the inclusion criteria below:

1. Studies carried out in any part of a country located 
between the tropics in tropical Africa, which focused 
on the effects on human health from increasing tem-
perature, extreme heat, or heatwaves, and considered 
humidity, wind speed, solar radiation, or hot climate.

2. Studies carried out in any part of a country located 
between the tropics in tropical Africa, which have con-
sidered the effects of heat as modifiers of deaths/infec-
tions from malaria, Trypanosomiasis, Schistosomiasis, 
and other infectious diseases.

After removing duplicate entries and articles due to study 
area location and the 2 inclusion criteria, 100 articles met 
the requirement for this review as shown in Fig. 2.

Studies identified by the review

The number of studies on the effects of heat on human 
health, organised by country in tropical Africa, is shown 
in Table 3. Many studies have been conducted in Nigeria, 
Ghana, Kenya, Tanzania and Burkina Faso, Gambia, and Ta
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South Africa. Only one or two studies have been published 
for many countries. There were no studies done in the fol-
lowing 17 tropical African countries: Niger, Chad, Maurita-
nia, Ethiopia, Somalia, Eritrea, Togo, Ivory Coast, Liberia, 
Sierra Leone, Guinea Bissau, CAR, Zaire, Tanzania, Angola, 
Namibia, and Batswana. There have also been no studies 

conducted in African Countries that are partially in the trop-
ics, such as Algeria (Tamanrasset Province), Egypt (Aswan 
Governorate), Libya (Al Kufra), and Western Sahara. 9(9%) 
studies are multi-country, encompassing a wide range of 
environments, socioeconomic and populations, 5(5%) of 
which were conducted in West Africa and 1(1%) in Central 

Fig. 1  The tropical Africa region considered in this review

Table 2  Keywords search terms across all fields in the WoS database

Keywords search term Results from 
the search terms 
(WoS)

1 (extreme heat OR humidity OR WBGT OR apparent temperature OR wind OR Heat Index OR Humidex OR UTCI OR 
heatwave OR high temperature OR hot climate) AND "heat stress."

316

2 (extreme heat OR humidity OR WBGT OR apparent temperature OR wind OR Heat Index OR Humidex OR UTCI OR 
heatwave OR high temperature OR hot climate) AND “human health."

1, 688

3 (extreme heat OR humidity OR WBGT OR apparent temperature OR wind OR Heat Index OR Humidex OR UTCI OR 
heatwave OR high temperature OR hot climate) AND “heat related mortality."

396

4 (extreme heat OR humidity OR WBGT OR apparent temperature OR wind OR Heat Index OR Humidex OR UTCI OR 
heatwave OR high temperature OR hot climate) AND “heat related morbidity."

943

5 (extreme heat OR humidity OR WBGT OR apparent temperature OR wind OR Heat Index OR Humidex OR UTCI OR 
heatwave OR high temperature OR hot climate) AND “thermal comfort."

2176

6 (extreme heat OR humidity OR WBGT OR apparent temperature OR wind OR Heat Index OR Humidex OR UTCI OR 
heatwave OR high temperature OR hot climate) AND “heat rashes."

216
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Africa. 1(1%) study was conducted in Kenya, Zambia, and 
Zimbabwe; Guinea, Gabon, the Democratic Republic of 
the Congo, South Sudan, and Uganda; and Kenya, Uganda, 
Rwanda, Burundi, Tanzania, Zambia, Malawi, and Mozam-
bique. A multi-country study offers a more reliable under-
standing of tropical Africa's complex interactions between 
heat and human health.

The temporal resolution of studies and the length 
of time that they explored health impacts

The temporal resolution of the studies relates to whether the 
data was collected daily, weekly, monthly, seasonal, annu-
ally, and future projections. The length of the study relates 
to how long the studies investigate health impacts, i.e., how 
many days or years of data were used for the study.

Concerning the temporal resolution of the data, 15 (15%) 
of the studies project the future effects of heat on human 
health (Lorena et  al. 2018; Ragatoa et  al. 2018; Fotso-
Nguemo et al. 2022). 25 (25%) studies used hourly, daily, 
monthly, and seasonal datasets, e.g. Azongo et al (2012) 
and Faye et al (2021) studied heat exposure on a daily scale. 
Brewster and Greenwood (1993) and Frimpong et al (2014) 
explored seasonal scale variations. 43 (43%) of the studies 
are based on annual and multi-annual scales. These were 
heat-health studies lasting years or decades. For example, 
studies by Etard et al (2004) and Fotso-Nguemo et al (2022) 
cover 11 and 39 years, respectively.

It may be argued that studies founded on annual and 
multi-annual scales, as opposed to daily, weekly, monthly, or 
seasonal studies offer a better extrapolation of the association 

between extreme heat and human health because it enables 
a more accurate assessment of the effects and changes over 
time. This depends on whether the study is a clinical trial 
assessing the immediate effects of excessive heat over a 
relatively short period or a cohort study exploring the long-
term health effects of extreme heat to monitor the change 
over time. For instance, case-crossover studies are a type of 
observational research design commonly used in epidemiol-
ogy and public health to investigate the association between 
an exposure such as heat exposure and an outcome such as a 
health outcome, these studies are beneficial for studying the 
acute effects of transient exposures on short-term outcomes.

Methods and technologies for data collection 
and analysis

Systematic data collection from weather stations is often 
used (Olatunde 2016; Azongo et al. 2012; Luque Fernández 
et al. 2009) while other studies use data from remote sens-
ing, for example Wiru et al (2020), Mutai (2013), and Paz 
(2009) used satellite data from the National Climate Data 
Centre of the National Oceanic and Atmospheric Adminis-
tration. Herold et al (2017). Balogun and Balogun (2014), 
Kwasi et al (2014), and Balogun and Daramola (2019) used 
a Shielded portable Lascar EL-USB-2 data logger for col-
lecting observed temperature and relative humidity data. 
Some experiments utilised technological data observations 
concerning the data type, such as temperature and relative 
humidity, from a weather station or a Shielded portable 
Lascar EL-USB-2 data recorder (Adeniyi 2009; Frimpong 
et al. 2016; Balogun and Daramola 2019). Due to their cost, 

Fig. 2  The literature search 
procedure
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portability, and convenience, the use of Lascar USB tem-
perature and humidity sensors with a calibrated Questemp 
heat stress monitor for daily, monthly of seasonal studies has 
increased in recent years (Balogun and Balogun 2014; Kwasi 
et al. 2014; Frimpong et al. 2016). Other research methods 
include questionnaires, surveys, and FGD (Ngwenya et al. 
2018; Frimpong et al. 2020; Nunfam 2021). Nevertheless, 
some studies rely on hospital health data (Etard et al. 2004; 
Diboulo et al. 2012; Wiru et al. 2020).

13 (13%) of the articles cited in this review utilised rea-
nalysis and climate models to simulate past, present, and 
future heat-human health relationships. 5 (5%) of studies 
explored future projections of heat stress, high temperature, 
relative humidity, heatwaves, and extreme heat on human 
health (Ermert et al. 2012; Sylla et al. 2018; Sarr et al. 2019; 
Gyilbag et al. 2021; Ragatoa et al. 2018). Reanalysis and cli-
mate models provide spatially gridded, historical and future 
climatic data, essential for studying long-term trends and 

potential future scenarios of heat impacts on human health 
across large spatial domains, aiding public health planning 
and climate change adaptation strategies. The output from 
these models often contains uncertainties due to assump-
tions and limitations in data and might not accurately capture 
local variations, leading to less precise assessments at local 
scales. 6 (6%) of the cited studies are at the regional scale, 
e.g. (Blom et al. 2022, Adeniyi and Oyekola 2017, Sylla 
et al. 2018, Batté et al. 2018; Ermert et al. 2012) covered 
West Africa, whereas Fotso-Nguemo et al. (2022) covered 
central Africa.

Several studies have used high resolution regional climate 
model simulations to estimate the effects of different green-
house gas emissions scenarios on future health in tropical 
Africa. Some studies have used climate projections from the 
recent Coordinated Regional Climate Downscaling Experi-
ment (CORDEX) program (Sarr et al. (2019), Ragatoa et al. 
(2018), Sylla et al. (2018), Gyilbag et al. 2021) and Adeniyi 
and Oyekola (2017)), for either Representative Concentra-
tion Pathway (RCP) greenhouse gas scenarios or global 
warming scenarios. Other studies have used the COSMO-
CLM regional climate model, e.g. Ermert et al. (2012) and 
Fotso-Nguemo et al. (2022) considered a 1.5 °C global 
warming scenario. Diouf et al. (2013) used two, older, SRES 
emissions scenarios. No studies to date have considered the 
latest SSP (Shared Socioeconomic Pathways) scenarios and/
or simulations from CMIP6 climate models (Coupled Model 
Intercomparison Project).

Over 47 (47%) of the identified studies employed descrip-
tive and inferential statistics to analyse daily, monthly, and 
seasonal data from field surveys, FGD, questionnaires, and 
interviews (Alaigba et al. 2018; Ngwenya et al. 2018; Nunfam 
2021). Annual and multi-annual studies such as 30 years, fre-
quently employ time series, regression, and correlation designs 
to directly compare health data with biometeorological factors 
(Scott et al. 2017; Asamoah et al. 2018; Wiru et al. 2020).

Summary of the review findings

Table (Online resources 1) summarises studies on the effects 
of extreme heat on human health in tropical Africa. Even 
though most studies identified showed an increase in mor-
bidity and mortality in the hot/rainy season compared to the 
cool season (e.g., Kynast-Wolf et al. 2006; Mutisya et al. 
2010; Diboulo et al. 2012; Scott et al. 2017), studies in Bono 
village of Ghana revealed an increased risk of death at the 
lowest Apparent Temperature (18°C). Specifically, the high-
est relative mortality risk (RR = 1.61, 95% CI: 1.21–2.15, 
p-value < 0.001) was observed three days after exposure 
to an apparent temperature of 18 °C, indicating a substan-
tial increase in the risk of death compared to other appar-
ent temperatures studied such as the first quartile (23 °C), 
third quartile (26 °C), and the highest apparent temperature 

Table 3  The number of studies on the effects of heat on human 
health, organised by country

Study location Number 
of stud-
ies

Nigeria 22
Ghana 13
Kenya 9
Tanzania 8
Burkina Faso 7
Gambia 6
South Africa 14
Senegal 4
Zambia 3
Zimbabwe 3
Uganda 3
Democratic republic of Congo 2
Cameroon 2
Mozambique 1
Malawi 1
Burundi 1
Rwanda 1
Sudan 1
Mali 1
Gabon 1
Guinea 1
Benin 1
West Africa 5
Central Africa 1
Kenya, Zambia, and Zimbabwe 1
Guinea, Gabon, DRC, South Sudan, Uganda 1
Kenya, Uganda, Rwanda, Burundi, Tanzania, Zambia, 

Malawi, Mozambique
1
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(31 °C) that showed no significant relationship with mortal-
ity (Wiru et al 2020). In Botswana, Alexander et al (2013) 
found that minimum temperatures were related to increase 
Diarrhea occurrence. A study by Rayco-solon et al (2004) 
revealed seasonality in death rates, with more deaths occur-
ring during the "hungry" season (July – November), marked 
by the peak of agricultural work, depletion of food supply, 
and a rise in infectious diseases. Diboulo et al (2012) noted a 
substantial increase in deaths with heat intensification at lags 
of 0 – 1 days. A temperature rise of 1.0°C at lag 0—1 was 
associated with a 2.6% increase in mortality for all ages and 
3.7% for children under five years, with people over 60 most 
vulnerable to extreme heat. Asamoah et al (2018) found a 
42% rise in the likelihood of suffering a miscarriage with 
every degree rise in Wet Bulb Globe Temperature (WBGT), 
suggesting a connection between atmospheric heat exposure 
and adverse pregnancy outcomes in Accra. It was also dis-
covered that an increase in Temperature to over 40°C during 
summer could affect the population who spend long hours 
in the heat, such as street vendors (Ngwenya et al. 2018).

Frimpong et al (2020) found that heat stress consider-
ably influences farmers in Bawku East of Northern Ghana, 
with malaria and heat cramps identified among the recur-
ring diseases. Nunfam et al (2019a) established a relation-
ship (p < 0.05) between historical climate change threat 
awareness and work-related heat stress and the variance in 
educational accomplishment in the dissemination of cop-
ing approaches to work-related pressure from extreme tem-
peratures. This agrees with the conclusions of Nunfam et al 
(2019b), who found a major variation in temperature-related 
morbidity with the type of mining activities among work-
forces in five mining spots in Western Ghana. Temperature 
and precipitation have altered the growth rates and survival 
of malaria pathogens. Several studies have demonstrated 
a decline in the spread of malaria in West Africa because 
of climate change-related increases in temperature and a 
decrease in precipitation (Ermert et al. 2012). In contrast, 
McGregor et  al (1961), Lawoyin (2001), Reyburn et  al 
(2011), and Ifatimehin and Ujoh (2014) observed a rise 
in morbidity or death during the rainy/hot season. Daniel 
(2015) reported a significant relationship between extreme 
temperature, rainfall, and heat rash.

Socioeconomic factors that contribute to population 
vulnerability to heat

Three (3%) of the articles identified in this review examined 
socioeconomic characteristics that contribute to increasing 
population vulnerability to heat. Grace et al (2012) consid-
ered the influence of education, home water supply, floor 
material, and livelihood zones to explore the association 
between surface temperatures, rainfall, and stunting in chil-
dren under 5 years. Ibu and Bisong (2021) explored the 

urban bioclimatic discomfort index in Calabar, Nigeria, 
using socioeconomic and demographic parameters such as 
the urban heat island effect, age sensitivity, biophysical and 
sociocultural data, urban planning, and health. The study 
emphasises the need to integrate age and urban environmen-
tal factors in measuring vulnerability to heat discomfort in 
cities. Oluwafemi et al. (2023) considered the urban heat 
island, population density, age and health conditions such as 
elderly, young children, people with chronic diseases or dis-
abilities, and low-income populations that have less capacity 
to adapt, as well as living conditions of people in informal 
settlements and areas with less vegetation. The study identi-
fied critical heat risk zones covering approximately 423  km2 
in in densely populated areas.

Including demographic and socioeconomic factors is 
crucial in heat-human health studies because different age 
groups, health statuses, and socioeconomic classes have dif-
ferent sensitivities to heat, affecting their health differently. 
High population densities, especially in urban areas, exac-
erbate the urban heat island effect, which increases health 
risks. Socioeconomic status influences access to cooling 
resources, healthcare, and information on extreme heat, 
which is essential for mitigating heat-related health risks. 
Understanding these factors aids in developing targeted 
strategies to protect the most vulnerable populations from 
heat-related health issues.

Lag effects

The "lag period" refers to the time delay, often measured 
in days, between exposure to high temperatures and the 
observable health effects due to exposure. Lag periods vary 
between studies, e.g. 19 (19%) of the articles cited in this 
study observed a lag period of 0–28 days, 3 (3%) observed 
a lag period of 6–8 weeks, and 10 (10%) 1–10 months. 68 
(68%) of the studies did not calculate a lag period. Faye 
et al. (2021) found that the relative mortality risk varied 
across different lags, e.g. the relative risk was below 1.0 at 
lag 0 days, indicating no immediate significant risk increase. 
However, a noticeable increase in relative risk was observed 
between lags 6 to 12 days, with the highest relative risk 
appearing at lags 8 and 9 days. The effect varied across dif-
ferent demographics, with significant associations among 
male mortality at lags 11 to 18 days and for female mortal-
ity at lags 7 to 14 days. Children aged 0 to 5 years showed 
significant risk at lags 8 to 14 days, and people aged 55 years 
or above were at a higher risk at lags 7 to 16 days. Interest-
ingly, no significant association was observed for the age 
group of 6 to 54 years across different lags. This lag effect 
demonstrates the delayed impact of heat waves on mortal-
ity, highlighting the importance of considering varying time 
frames when assessing the health impacts of heat exposure 
in different demographic groups.
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Various approaches have been used for estimating the 
lag period. The distributed lag nonlinear model (DLNM) 
is the most widely used, e.g. Nyadanu et al (2023), Bunker 
et al (2017), and Wiru et al (2020). The DLNM assesses the 
nonlinear association between heat exposure and mortality 
over different lag days, with a maximum lag of 25 days con-
sidered. This approach is useful for estimating heat waves' 
nonlinear and delayed effects on mortality. Nyadanu et al 
(2023) investigated the delayed effects of long-term heat 
stress on stillbirth rates in Ghana, using a DLNM to ana-
lyse the nonlinear exposure–response relationship and the 
time-structured lagged effects of heat stress. This approach 
is essential to understand the complex interplay between 
environmental factors like heat stress and adverse preg-
nancy outcomes. Egondi et al. (2012) employed a DLNM 
to understand the association between daily maximum 
temperature and Years of Life Lost. The study observes a 
J-shaped exposure–response curve, indicating a significant 
increase in YLL associated with cold temperatures. The 
study also explored the lag effect of temperature on YLL, 
showing that the impact of cold temperatures on YLL was 
observed mainly within the first five days after exposure. 
The study revealed no significant added impact of cold spells 
or heat waves on YLL beyond this lag effect. Bunker et al 
(2017) investigated the impact of heat exposure on non-
communicable disease years of life lost (NCD-YLL) in rural 
Burkina Faso from 2000 to 2010. It uses a daily time series 
regression analysis with DLNMs. The key finding was that 
moderate to extreme heat exposure significantly increases 
premature deaths from NCDs. The most pronounced health 
effects were observed on the day of heat exposure, with a 
diminishing impact over the following four days. This lag 
effect demonstrates heat exposure's immediate and short-
lived impacts on NCD-related mortality. Wiru et al (2020) 
used a DLNM to analyse the relationship between daily 
mean apparent temperature and all-cause mortality. The 
study found a nonlinear association, observing increased 
mortality risks at lower temperatures, especially from lag 
2 to 4 days after exposure, with the highest risk occurring 
3 days after exposure. This lag effect illustrates the delayed 
impact of temperature changes on mortality risks. The study 
also notes sex-specific differences in the temperature-mor-
tality relationship.

Poisson regression is also often used to assess lag effects. 
Luque Fernández et al. (2009) used a Poisson autoregres-
sive model to analyse the relationship between the weekly 
number of cholera cases and climatic variables. The study 
found a significant association between the increase in chol-
era cases and a rise in temperature 6 weeks prior, as well as 
an increase in rainfall 3 weeks before. Azongo et al (2012) 
used a time-series Poisson regression approach to analyse 
the short-term associations between mortality and mean 
daily temperature. They found a significant association at 

various lag days, indicating that temperature variations can 
have delayed effects on mortality.

Distribution of studies based on urban, rural, 
and informal settlements.

The review identified 34 studies (34%) focusing on urban 
areas. 21 studies (21%) were carried out in rural areas. The 
remaining 45 studies (45%) assessed the association between 
ambient temperature or heat waves and mortality in urban 
and rural areas. Table 4 summarises studies that have been 
conducted in urban and rural areas of tropical Africa. Some 
studies compared urban and rural populations based on their 
sensitivity to extreme heat (Nunfam et al. 2021; Jankowska 
et al. 2012; Alexander et al. 2013). Fewer studies were car-
ried out in rural areas compared with urban, with the rural 
areas of West Africa having more studies relative to other 
regions. Together these studies revealed the harmful influ-
ence of heat on human health, behaviour, and productivity 
among farmers, labourers, and mining workers in rural com-
munities (Nunfam 2021). While populations have diverse 
responses and coping mechanisms to heat exposure, these 
are inefficient in preventing heat-related morbidity and mor-
tality at both the household and farm levels (Frimpong et al. 
2020). Urban centres are known for their heat impacts on 
human health due to their propensity to create heat islands. 
The urban heat island (UHI), whereby temperatures in urban 
areas are higher than in the surrounding rural regions, exac-
erbates the influence of heat on human health (Sheridan 
and Allen 2015). Urbanisation is the leading cause of urban 
sprawl. Urban sprawl has led to the growth of informal set-
tlements that house low-income populations in many Tropi-
cal African cities.

Informal settlements are an essential feature of tropi-
cal African cities, commonly identified as unplanned and 
densely-packed low-rise buildings with a high population 
(Yahia et al. 2018). The dwellers of informal settlements are 
more sensitive to the impact of extreme heat due to their low 
adaptive capacity, e.g. Lorena et al (2018) found an increase 
in non-communicable diseases in children, deteriorating 
mental health, and occupational hazard in adults of informal 
residences with low income due to extreme Temperature. 
The informal settlements are densely packed housing with 
poor building materials that lack access to public services 
and amenities, making their population particularly vulner-
able to heat (Scott et al. 2017). The disparities in the designs 
of built-up expansion, vegetation and construction materials 
in cities can differentially affect the threat of heat-related 
morbidity and mortality. For instance, Egondi et al (2012) 
found that the extreme heat experienced in the neighbour-
hood of the informal settlements was more than the ambient 
temperature recorded in the nearest weather station by sev-
eral oC. A study by Scott et al (2017) employed iButtons – an 
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inexpensive device for measuring temperature and relative 
humidity, to investigate heat variations in an informal set-
tlement in Nairobi. Both Scott et al (2017) and Egondi et al 
(2012) recognised that poor populations were at greater risk 
of extreme heat than wealthier populations, highlighting the 
social inequalities that exist in heat exposure and adverse 
health outcomes. There are, however, very few empirical 
studies on the vulnerability of human health to heat, particu-
larly in the informal settlements of tropical Africa (Pasquini 
et al. 2020). Even though climate threat is projected for the 
African continent (Dosio 2017), studies in Zimbabwe have 
shown that informal settlements and urban outdoor workers 
are more vulnerable to extreme heat (Ngwenya et al. 2018). 
To this end, very little is known about the vulnerability to 
heat in tropical Africa.

Health outcomes

The primary health outcomes of the studies cited in this 
review are health risks associated with increased tempera-
tures and heat stress (Joseph and Demot, 2021; Morakinyo 
et al. 2016; Van de Walle et al. 2022; Gratien Kiki et al. 
2020; Mabuya and Scholes 2020; Sylla et al. 2018; Wright 
et al. 2022). For instance, Mushore et al. (2017) identi-
fied outdoor thermal discomfort in densely built-up areas, 
and Ndetto and Matzarakis (2013), Ndetto and Matzarakis 
(2017) and Sarr et al (2019) found heat stress and thermal 
discomfort to be the major health issues during the hot sea-
son leading to heat exhaustion, heatstroke, and overall dis-
comfort affecting daily activities.

The review highlights the myriad of ways by which 
extreme heat affects human health, through different and 
varied health outcomes. Several studies report an increase 
in the incidence of diarrhoea, respiratory infections, malaria, 
and physiological stress associated with heatwaves, heat 
stress and extreme temperatures (Omonijo et al. (2011), 
Adeniyi and Oyekola (2017), Thandi et al. (2018), Njoku 
and Daramola (2019), and Adeboyejo et al. (2012)). Dukic 
et al. (2012) and Tunde et al. (2013) observed an increase in 
the prevalence of asthma, malaria, meningitis, and typhoid 
fever due to temperature, relative humidity, and air quality. 
Other studies have reported that increasing temperatures 
and relative humidity exacerbate heatstroke, heat stress, 
heat cramps, heat exhaustion, dehydration, kidney failures, 
acute meningitis, productivity loss, anxiety, increased risk 
of malaria and effects on social well-being among outdoor 
workers (Frimpong et al. (2014), Nunfam (2021), and Frim-
pong et al. (2020)).

The review also identifies several health outcomes, 
specifically relevant to children. Sylvia Blom et al (2022) 
found increased chronic and acute malnutrition in children 
due to extreme heat exposure. Scorgie et al (2023) found 
an increased risk of heat-related health issues such as heat 

exhaustion, dehydration, and potential impacts on foetal 
health. Nyadanu et al (2023) identified an increased risk of 
stillbirth associated with exposure to long-term heat stress. 
Bonell et al (2023) suggests that reducing maternal expo-
sure to heat stress and strain will likely reduce foetal strain, 
potentially decreasing adverse birth outcomes.

Some studies have shown how extreme heat dispropor-
tionally affects the elderly and female population, e.g. Faye 
et al (2021) found that heat waves lasting three or more con-
secutive days increase the risk of death, with the elderly over 
55 years and females being more affected.

Priorities for reducing the health impacts 
from extreme heat

There is a need for a more detailed analysis of cause-specific 
mortality to understand better and address regional seasonal 
mortality patterns in tropical Africa (Ndetto and Matzarakis 
2013; Ndetto and Matzarakis 2017; Lawoyin 2001; Kynast-
Wolf et al. 2005; Mutisya et al. 2010; Diboulo et al. 2012; 
Azongo et al. 2012; Mrema et al. 2012; Scott et al. 2017; 
Wiru et al. 2020).

Several studies emphasise the importance of integrat-
ing tree planting and urban greening in building and urban 
design and materials to enhance thermal comfort and ven-
tilation to enhance thermal comfort and reduce health risks 
associated with extreme temperatures, particularly in regions 
where heat stress has a major impact on human health and 
productivity (Omonijo et al. (2013), Morakinyo et al. (2014), 
Njoku and Daramola (2019), Mushore et al. (2017), Mabuya 
and Scholes (2020) and Van de Walle et al. (2022)). Wright 
et al (2022) emphasise the need to develop climate-proof 
housing and improve access to essential services to support 
resilient coping mechanisms, particularly in rural areas, 
during heatwaves. Ndetto and Matzarakis (2013) prioritise 
adapting urban planning and architectural design to miti-
gate heat stress, including optimising street orientation, and 
building heights to enhance thermal comfort in urban areas.

Moreover, several studies have underscored the impor-
tance of implementing effective adaptation measures 
(Egondi et al. (2012), Dukic et al. (2012), Adeboyejo et al. 
(2012) and, Adeniyi and Oyekola (2017), Sarr et al. (2019)). 
These include enhancing public awareness, improving public 
health infrastructure, developing health action plans, enhanc-
ing disease surveillance and response systems, increasing 
community awareness, preparedness and education on health 
risks associated with climate change, and targeting children.

This review also finds that further research is needed 
to quantify better the impact of warming on socioeco-
nomic activities and health, to inform more targeted and 
efficient adaptation strategies, which is crucial for mitigat-
ing the adverse effects of heatwaves and extreme tempera-
tures on human health. Sylvia Blom et al (2022) suggested 
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implementing healthcare and nutrition program strategies to 
reduce the impact of rising temperatures on child nutrition. 
Adeniyi and Oyekola's (2017) argue that improving regional 
climate modelling is a priority for better prediction of heat 
waves. Tunde et al. (2013) recommend public awareness and 
education about climate variability and its effects on health 
through broadcasting weather reports and educating people 
on the impacts of anthropogenic activities on the climate.

Additionally, practical measures using mosquito nets, 
clearing stagnant water, and avoiding residing near riverbeds 
are suggested to reduce the risk outcomes from future heat-
waves. Future priorities for minimising these risks involve 
implementing heat stress management strategies, enhancing 
workplace heat stress policies, and improving awareness and 
training about heat-related health risks among outdoor work-
ers (Ngwenya et al. 2018; Nunfam 2021). Future priorities 
for reducing these health risks include developing effective 
heat wave early warning systems and public health strategies 
tailored to the needs of the most vulnerable groups, such 
as the elderly, children, and female population, to enhance 
preparedness and response to heat waves and mitigating their 
impact on human health (Faye et al. 2021).

Adapting to extreme heat should take account of evi-
dence from this review that extreme heat can affect female 
populations more (Faye et al. 2021). Scorgie et al (2023) 
emphasise the importance of developing culturally appro-
priate adaptation strategies to reduce heat risks for preg-
nant women. These strategies should consider local gender 
dynamics to empower women, enhance their autonomy, and 
improve community support during hot seasons. Nyadanu 
et al (2023) emphasise the need for public health and climate 
governance strategies to reduce maternal exposure to heat 
stress, particularly in rural areas, to lower the risk of still-
birth. These strategies may include developing heat stress 
warning systems, improving maternal healthcare services, 
and enhancing awareness and education about the risks of 
heat exposure during pregnancy. Bonell et al (2023) pri-
oritises further research to explore the association between 
heat stress and pregnancy outcomes in various settings and 
populations, aiming to develop effective interventions.

Opportunities for improving study methodologies

The majority of studies cited in the review obtained the cli-
mate data from traditional weather stations (Trærup et al. 
2011; Reyburn et al. 2011; Adeniyi 2009; Eludoyin 2014; 
Dukic et al. 2012), which means the estimates of climate 
are not necessarily identical to the conditions experienced 
by the population. This is because people experience ther-
mal discomfort indoors as well as outdoors, in distinct loca-
tions which may be a significant distance from the outdoor 
weather station. Our review has highlighted the importance 
of understanding thermal stress in informal settlements, yet 

temperatures are rarely monitored in these settings. Moreo-
ver, many urban areas of tropical Africa lack dense in-situ 
monitoring networks that can provide air temperature data 
at high spatial resolution.

Advances in technology offer an opportunity to address 
some of the methodological gaps discussed above. It is pos-
sible to measure climatic conditions more closely to the 
populations being affected, even at the individual person 
level. For example, few studies have used wearable devices 
such as iButtons that collect data on air temperature, humid-
ity, and UV radiation (Scott et al. 2017; Mabuya and Scholes 
2020; Van de Walle et al. 2022) or EasyLog-USB and Lascar 
USB temperature and humidity sensors (Kwasi et al. 2014; 
Balogun and Balogun 2014; Frimpong et al. 2016; Kiki et al. 
2020). Moreover, recent technological advancements have 
led to the development of intelligent sensors like micronee-
dles, skin patches, tattoos, and stretchable electronics. These 
devices can monitor various physiological parameters, 
including sweat rate, sodium levels in sweat, skin tempera-
ture, and heart rate (Paulo Silva Cunha 2018) and facilitate 
the creation of Internet of Things (IoT) networks to measure 
environmental conditions (Chapman 2015).

Remotely sensed data from satellite observations pro-
vide greater spatial coverage of land surface temperatures 
than what can be achieved with traditional weather station 
data. However, only 2% of the articles cited in this review 
used freely accessible satellite thermal imagery to map 
land surface temperature (Ifatimehin and Ujoh 2014; Scott 
et al. 2017; Mushore et al. 2017; and Van de Walle et al. 
2022). Thermal bands of satellite imagery such as Landsat, 
MODIS, and Sentinels, provide datasets with spatial resolu-
tion from 10 m to 1 km, enabling potentially high resolu-
tion thermal mapping in urban areas. Although Landsat 5–9 
imagery has good spatial resolution (100 m), the image is 
acquired at 10.00 am, which is unsuitable for heat-human 
health studies because maximum temperatures occur later 
in the day and minimum temperatures earlier. Although sat-
ellites can provide high resolution temperature data, they 
provide estimates of land surface temperature, which is not 
the same as air temperature, and a conversion is necessary 
(Anderson et al. 2021; Wang et al. 2022; Khan et al. 2022).

Conclusions

The evidence gathered from 100 articles in this review 
revealed that dehydration, discomfort, and heat-related 
morbidity and death increased during high temperatures 
or heat waves. The harmful effects of extreme heat on 
human health in tropical Africa include declining men-
tal health in adults of low-income residents (Lorena et al. 
2018), an increase in miscarriage risk with each degree 
of temperature rise (Asamoah et al. 2018), and effects 
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on the safety and well-being, psychological behaviour, 
productivity, and social comfort of outdoor workers who 
spend long hours performing manual labour (Nunfam et al. 
2019a, b; Nunfam 2021). The findings of this study are 
consistent with previous findings that higher temperatures 
increase the incidence of morbidity. According to Liu et al 
(2021b), renal disease rose by 10% for every 1°C increase. 
Heat and mental health research evaluations show that 
morbidity rose by 0.9% to 22% for every 1°C increase 
(Liu et al. 2021a). According to Phung et al (2016), the 
risk of cardiovascular hospitalisation increased by 0.7%. 
According to Fatima et al (2021), occupational illnesses 
and injuries increase by 1% for every 1°C increase in tem-
perature. Regarding morbidity or mortality, Faurie et al 
(2022) reported over 100% increases in case numbers. 
Given that more than 90% of urban population growth is 
anticipated in Asia and Africa (UN-Habitat 2014), urbani-
sation and increases in the artificial impervious surface 
are anticipated to impact the thermal environment due to 
the destruction of vegetation cover and the expansion of 
informal settlements. Almost 55% of Sub-Saharan Africa, 
according to UN-Habitat (2014), resides in informal settle-
ments, which are more vulnerable to heat-related morbid-
ity and mortality due to their dense population and poor 
living conditions. Heat-related health impacts are of con-
cern in tropical Africa, which is already facing substantial 
heat stress due to the climate and environmental change 
exacerbated by anthropogenic activities and increasing 
greenhouse gas levels.

The impact of extreme heat on human health in tropical 
Africa is worsened by the population's relative poor socioec-
onomic and demographic status and the environmental qual-
ity. Green spaces are an essential contributor to human well-
being. Studies have found that people dwelling in areas with 
less vegetation cover are more vulnerable to heat-related 
morbidity and mortality (Schinasi et al. 2018). Informal set-
tlements are characterised by poor physical infrastructure 
and little vegetation cover, which influences the UHI effect 
and increases night-time temperatures. Nighttime cooling is 
essential for people to get a good night's sleep and recuperate 
from the day's heat. There is a strong association between 
amplified night-time heat and inadequate sleep; the conse-
quence is more prevalent among the lower-income and age-
ing population (Obradovich et al. 2017). Most of the studies 
cited in this review reported increased heat-related morbid-
ity and mortality during the dry/hot season and the heat/
rainy season relative to the dry/cold season. For example, 
the prevalence of infectious diseases, such as malaria and 
diarrhoea, increased mortality in coastal towns of tropical 
Africa during the hot/wet season (Greenwood 1993; Ifa-
timehin and Ujoh 2014). The common reasons for excess 
mortality in these seasons are extreme heat and hygienic 
environments. The increased rain usually overstretches the 

sewage and drainage systems, leading to stagnant water and 
a wet environment.

Moreover, stagnant water and a damp environment offer 
numerous disease agents decent breeding and surviving 
grounds. In addition, the heat/rainy season, characterised 
by planting and growing crops, often coincides with the 
time of least food supply and poor nutritional status of the 
population (Rayco-solon et al. 2004). The dry/hot season 
is the transition period between Harmattan and the heat/
rainy season in tropical African cities that border the Sahara 
Desert. The dry/hot season exhibits excess mortality due to 
extreme heat, increasing the time spent outdoors to try and 
cool down. The poor population that cannot afford air con-
ditioning spends more time outside, making them vulnerable 
to disease pathogens (Pasquini et al. 2020). Moreover, their 
dwelling is usually overcrowded and poorly ventilated, lead-
ing to indoor air pollution, a significant cause of mortality 
peaks in informal settlements. There is a further increased 
risk of airborne disease and meningitis due to the Harmat-
tan dust from the Sahara Desert during the dry/hot season. 
A common observation in most identified studies in tropical 
Africa was the age dependency of morbidity seasonality. 
Older people are at a higher risk of dying during the hot/
dry season (Daniel 2015; Scott et al. 2017), while children 
below 9 years are most vulnerable to death in the heat/rainy 
season (Kynast-Wolf et al. 2006). Human sensitivity and 
ability to adapt to extreme heat's effects depend on the popu-
lation's demographic and socioeconomic status. Generally, 
there is a link between the human dwelling environment, 
the socioeconomic characteristics, and the adverse effects 
of extreme heat.
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