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Abstract 
I examine the effectiveness of donors in targeting the highest burden of malaria in the Democratic Republic of 
Congo when health information structure is fragmented. I exploit local variations in the burden of malaria induced by 
mining activities as well as financial and epidemiological data from health facilities to estimate how local aid is 
matching local health needs. Using a regression discontinuity design, I find significant but quantitatively small 
variations in aid to health facilities located within mining areas. Comparing local aid with the additional cost of 
treatment and prevention associated with the increased risk of malaria transmission, I find suggestive evidence that 
local populations with the highest burden of the disease receive a proportionately lower share of aid compared to 
neighbouring areas with reduced exposure to malaria infection. The evidence of disparities in the allocation of aid 
for malaria supports the view that donors may have inaccurate information about local population needs. 
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1 Introduction

Identifying and reaching the populations who have the most pressing health needs is essential

in countries with high disease burden and limited health care resources. Donors prioritise

health interventions to achieve the highest reduction in disease burden along with health equity

objectives (WHO, 2015a). Targeting the highest health needs requires donors to have complete

and accurate information about the distribution and intensity of local needs to make optimal

resource allocation decisions in the recipient country. However, barriers to the gathering and

sharing of health information are commonplace in low-income countries and may pose a threat

to narrow aid targeting.

In this article, I explore donors’ ability to target the highest health needs at the community

level by examining how local variations in the burden of malaria affect the amount of aid

allocated locally. Some researchers have already emphasised the importance of aid allocation in

maximising donors’ intended outcomes along with the challenges related to the identification of

the greatest needs.1 In particular, aid re-allocation to the highest needs could lead to maximum

welfare improvements when donors have full observability of the need in the country. To assess

the efficiency of aid targeting, analyses have been done both across and within countries (Esser

and Bench, 2011; Dieleman et al., 2014; Briggs, 2018). Although these studies provide innovative

methodologies to track aid resources, few can relate the findings to the efficiency of aid targeting.

First, the efficiency of aid should be determined by analysing how the observed aid allocation

differs from the optimal allocation that maximises the objective function of the donors (Collier

and Dollar, 2002). Second, aid could potentially improve the welfare of the beneficiaries; simply

matching aid resources to the distribution of the local needs could then lead to misleading

findings. Third, needs are often defined in general terms that could be measured through

multiple potential outcomes (Alatas et al., 2012). Divergences in identifying the key outcomes

of interest translate into unclear objectives of aid: the multifaceted relationship between health,

education and poverty implies that aid resources can serve many purposes and the estimated

outcomes can capture various types of aid (Qian, 2015). Fourth, the existence of various forms

of aid support poses a challenge to the identification of donors’ funding at the subnational level.2

Especially, it is practically impossible to distinguish external resources from domestic spending

at the local level since a significant part of aid may transit through the government budget.

Altogether, these combined factors pose a clear threat to the identification and disaggregation

of aid effects.

This paper addresses these identification issues in several ways. First, I focus the analysis

on donor funding for malaria to obtain distinct and measurable outcomes of donors’ objectives.

The high burden of the disease has attracted important external funding in sub-Saharan Africa

and the strategies for malaria elimination are well identified through the prevention, diagnosis

1See for example Ravallion and Chao (1989); Besley and Kanbur (1991); Bigman and Fofack (2000) and
Collier and Dollar (2002).

2External funding can transit through the government budget (on-budget) or be directed to local interventions
(off-budget); see Van de Sijpe (2013).
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and treatment of malaria cases.3 Thereby, I can link directly health needs related to malaria

with aid allocated for the disease. Second, I exploit the presence of multiple mining areas in

the eastern part of the Democratic Republic of Congo (DRC) to obtain spatial variations in

the burden of malaria. The existence of a dramatic increase in the risk of malaria transmission

within mining areas has been well documented in the tropical medicine literature (Gallup and

Sachs, 2001; Moreno et al., 2007; Vittor et al., 2009; Knoblauch et al., 2014). The spatial

variations in the disease pattern prevailing between mining and non-mining areas constitute

a natural experiment to analyse the geographical distribution of aid for malaria. The fact

that mining sites are characterised by having, locally, the highest risk of malaria transmission

essentially means that they should receive comparatively the highest share of aid for malaria.

Third, I exploit the unique health financing situation of the DRC to estimate aid for malaria

at the community level. The disease is highly endemic in the DRC and several years of civil

wars have extensively weakened the health system of the country. The considerable financial

support provided by the international community to tackle the humanitarian and health crisis

created a disproportionately financed health system. A striking example is found with the

National Malaria Control Programme for which external aid accounts for more than 95% of its

overall funding (MSP, 2017). Taking advantage of a novel dataset with detailed information on

key financial and health indicators at the health facility level, I argue that the stock value of

antimalarial commodities can approximate total aid for malaria at the local community level.

To ensure the validity of this assumption, I select health facilities located in a similar geo-

graphic area in the Eastern DRC and which should bear similar costs. The varying distances of

health facilities to their closest mines form two distinct groups that correspond to the treatment

(mining area) and control (non-mining area) groups. The presence of mosquito breeding sites

within mines leads to geographical areas with high risk of malaria transmission (Bousema et

al., 2012), and the mining threshold corresponds to the maximum travelling distance of miner

patients to health facilities. The discontinuity in the exposure to intense malaria infection at

the mining threshold should translate into a change in the pattern of donor’s behaviour if the

latter is accurately targeting the highest burden of malaria.

The estimation strategy relies on a regression discontinuity (RD) design to compare the

allocation of malaria funding for health facilities in the two groups, and thus, identify the

contribution of mining areas on local aid for malaria. To my knowledge, this is the first study to

exploit the stock value of antimalarial commodities to obtain direct tracking of donors’ funding

for malaria to health facilities. Importantly, these estimates can document the precision of

donors’ targeting for the disease and consequently, inform about their ability to identify the

highest health needs at the local community level.

I find no evidence that donors are targeting areas with the greatest burden of malaria. I first

consider whether local aid for malaria increases within mining areas and find a significant but

quantitatively small increase in local aid. To assess the magnitude of these estimates, I, next,

3The identification of the population with the highest burden of malaria should not be prone to different
meanings among donors and local governments.
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explore how the increase in local aid for malaria relates to the associated costs of the additional

burden of malaria in mining areas. The results offer a contrasting picture of the initial finding.

From the number of reported malaria cases at the facility level, the risk of malaria transmis-

sion increases, at least, by 7 percent in mining area. The estimated costs per capita of providing

prevention, diagnosis and treatment for the additional burden of malaria are then compared

to the increased aid for malaria in mining areas. I find that more than one third of the costs

required to address the additional burden of malaria transmission are not financed by donors,

suggesting that local aid is disproportionately distributed among health facilities across mining

areas and non-mining areas. The estimates are robust to a number of sensitivity checks, includ-

ing different RD polynomial orders and various bandwidth selections. These findings provide

evidence consistent with studies showing the unequal allocation of donors’ funds towards the

need at sub-national levels (Odokonyero et al., 2015; Borghi et al., 2017; Kotsadam et al., 2018;

Briggs, 2018).

Furthermore, the decomposition of aid allocation between curative treatment, prevention

and diagnosis reveals disproportionate funding patterns. A malaria-preventive commodity

mostly drives the increase in local aid for malaria within mining areas for pregnant women,

whilst aid for other commodities is either small or unchanged. Overall, these findings provide

some suggestive evidence that donors have limited capacity to target aid to beneficiaries with

the highest health needs.

This analysis contributes foremost to the literature on resource allocation and aid effective-

ness. Donors’ imperfect observability of local needs is a well-known problem for aid targeting

(Besley and Kanbur, 1991) that has been addressed either by using a proxy based on a set of

observable household characteristics for the unobservable outcome (proxy-means testing) or by

delegating the identification process directly to local community leaders when essential infor-

mation is missing (Coady et al., 2004; Galasso and Ravallion, 2005; Alatas et al., 2012). My

work complements these studies by offering an innovative approach that exploits the geographic

location of mines to determine locally the highest health needs and evaluate the precision of aid

targeting.

My research also provides a novel contribution to the theoretical literature on aid effective-

ness as it offers a unique opportunity to test empirically one of its main assumptions. Specifi-

cally, since aid ineffectiveness is widely seen as the consequence of agency problems between the

donor and the recipient (Azam and Laffont, 2003), one solution consists of implementing an aid

contract that incentivises the recipient to comply with the donor’s poverty reduction objectives.

This theoretical setting hypothesises that the donor has perfect information about the needs

in the country. My results challenge this assumption by arguing that donors might only have

limited capacity to collect local health information due to factors hampering the circulation of

information from local communities to the central government and donors.4

4These findings are consistent with the recent experimental literature on the imperfect observability of local
needs to donors, which also exploits location-specific data. See BenYishay and Parks (2019) for an excellent
review of these studies.
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The remainder of the paper is organised as follows. Section 2 provides background on

the financial and epidemiological situation in the DRC. Section 3 describes the data and the

geographical analysis. Section 4 presents the empirical analysis related to the impact of mines

on aid for malaria to health facilities and introduces the regression discontinuity setting. Section

5 describes the results and section 6 discusses policy implications and concludes.

2 Background

2.1 Malaria situation and Artisanal Small-scale Mining

Malaria Situation - Malaria represents a critical public health challenge in the DRC.

Almost the entire country is under high risk of malaria transmission where the disease is

among the leading cause of mortality and morbidity (WHO, 2015b). In 2015, the DRC

accounts for 7.1% of the global total of estimated malaria deaths, ranking second in the

world (WHO, 2015b). Malaria is mostly caused by Plasmodium falciparum in the country,

a parasite transmitted through the bite of mosquitoes. National strategies to control and

reduce the spread of the disease consists of 1) prevention through the use of insecticide-treated

mosquito nets (ITNs), Indoor Residual Spraying (IRS) and sulfadoxine-pyrimethamine (SP),

a chemoprevention administered to pregnant women and children less than five years old ; 2)

identification of malaria cases through light microscopy or rapid diagnostic tests (RDTs)5; 3)

antimalarial treatment with artemisinin-based combination therapy (ACT), the recommended

first-line treatment for uncomplicated malaria cases.6

Mining Sites - Artisanal and small-scale mining (ASM) refers to informal mining work

involving minimum use of mechanical tools (Hentschel et al., 2002). The activity is estimated to

be responsible for 90 % of the total mineral production in the DRC (Andrews et al., 2008). Ow-

ing to its informal nature, artisanal mining poses significant health and safety hazards. The use

of mercury for gold extraction and the presence of dust and fine particles in the air surrounding

mines expose miners to unsafe working conditions. Furthermore, mining activities rely on the

use of abundant water to filter the extracted minerals, leaving multiple open pits with stag-

nant water. Consequently, mines provide extensive breeding sites for mosquitoes which could

increase the risk of malaria transmission among populations living and working in proximity

to mines (Staedke et al., 2003). Multiple evidence of an increased malaria prevalence within

mining areas and around mosquito breeding sites, in general, supports this fact (Moreno et al.,

2007; Vittor et al., 2009; Knoblauch et al., 2014).

5The malaria diagnosis relies on two possible tests: a microscopic identification of the malaria parasite and a
Rapid Diagnostic Test (RDT). The former test requires extensive expertise and is usually done in clinical centres
and hospitals. On the other hand, RDTs exist in kit forms and do not require extensive expertise to perform the
test and interpret the results. It is therefore mostly used across health facilities in the DRC.

6In 2005, the DRC adopted artesunate and amodiaquine (ASAQ) as the first line treatment for uncomplicated
malaria cases, and the combination of artemether and lumefantrine as the second line treatment (MSP, 2011).
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2.2 Health funding landscape in the DRC

Health Sector - The Congolese public health sector is divided in three decentralised

levels: a central level for the management of national health programmes and general hospitals;

an intermediate level composed of 26 provincial health divisions with provincial level hospitals

and laboratories as well as pharmaceutical warehouses; a health district level divided into 516

health zones across the country, where each health zone has at least one hospital. Health

zones are then further divided into health areas which include one health centre for about

10,000 inhabitants. Access to health care in the DRC is low in the public health sector, with a

utilisation rate of health services of 30% (World Bank, 2015).

Health Funding Landscape - Several years of civil wars and continuing lack of government

financing have drastically undermined the health system in the DRC. As a result, the country

extensively relies on out-of-pocket expenditures and external aid to finance the provision of

health care services.7 The presence of multiple donors affects disproportionately the financing

of the health sector, with some disease programmes almost entirely funded by the international

community (such as HIV, Tuberculosis or Malaria). This observation is particularly salient

with the National Malaria Control Programme where more than 95% of its overall funding

comes from external aid (MSP, 2017). The three major donors for malaria control activities

in the DRC are the Global Fund to Fight AIDS, Tuberculosis and Malaria, the United States

Government (U.S. Agency for International Development, USAID) and the United Kingdom

Government (Department for International Development, DFID) which together account for

92% of total aid for the malaria programme in 2017.8

According to national guidelines, prevention, diagnosis and malaria treatment in public

health facilities is free of charge for patients. But due to low salary and frequent disruptions in

salary payments, health workers charge, in practice, small user fees on malaria patients.9

2.3 Evidence of Local Malaria Funding

This section presents the proposed strategy to locally estimate foreign aid allocated to the

Malaria Control programme.

Lack of information about donors’ funding at the local level is a major barrier to quantify

the amount of foreign aid that is allocated to each health facility. One reason behind this data

limitation issue is that donors choose either to allocate funds to national disease programmes

7In the DRC, the major source of health financing comes from household funds (45%) followed by external
donors (40%) and government expenditures (15%) (MSP, 2017).

8Other partners for the malaria control programme include the World Bank, the World Health Organisation
and UNICEF whose funds correspond to more general support for the health system of the country.

9Consultation fees represent about 30% of out-of-pocket expenditures for Congolese patients, whilst the
average total medical cost for outpatient care is approximately $7 (Laokri et al., 2018). Patient user fees for
diseases funded by external donors (such as malaria) are lowered due to the reduction in the cost of medicine
and drug but still include fees to health workers. These fees also tend to increase in urban areas and with the
size of health facilities (Bertone et al., 2016).
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that transit through the government budget or to directly target health interventions at subna-

tional levels (through the support of local implementing partners). It is, therefore, practically

impossible to distinguish external aid from domestic spending at the health facility level. How-

ever, the financing of the health system of the DRC offers a unique setting to circumvent this

identification problem. The Malaria Control Programme is almost entirely funded by donors

(see figure 1) which implies that antimalarial commodities in public health facilities are almost

exclusively provided by external resources.10

The stock value of antimalarial commodities should then be a valid proxy for local external

aid if it represents the major source of variations in local funding (whilst all other expendi-

tures related to external aid for malaria remain constant). In general, this assumption would

raise concerns as other malaria related costs, namely human resource costs, transportation and

storage, are expected to vary significantly across the country.11

However, I restrict the data sample to observations that are located within a short distance

of the mining threshold and I argue that apart from the provision cost of antimalarial commodi-

ties, all other malaria-related costs should remain relatively constant across health facilities in

the sample. First, salaries and risk allowances (governmental payment distributed to all health

workers) to health workers are provided by the government (mostly through donors’ support)

based on a salary scale.12 It is then unlikely that two health facilities, located in a common (ru-

ral) area, experience significant disparities in governmental payments for a given qualification of

health workers.13 Second, all health commodities are centrally procured by a national organisa-

tion that manages and coordinates the pool procurement of pharmaceuticals, their distribution

and storage in regional warehouses, and their supply to health facilities.14 The expenditures

related to the transport and storage of health commodities are therefore closely tied to the

geographic location of the health facility. Since my data sample spans health facilities over a

10The low contribution of government spending to the malaria control programme (figure 1) is mostly dedicated
to cover management operations at the central level (MSP, 2017), and so its contribution to the local provision of
commodities should be minimal. The proportionately low government spending also avoids the risk that donors
may adapt their aid allocation to specific areas in response to government health investments or vice versa (Öhler
et al., 2017). Another concern is that no information is available on patients’ purchase of antimalarial medicines
through retail drug stores. These expenditures may come from antimalarial medicines bought from the illegal
pharmaceutical market ((Björkman Nyqvist et al., 2012);Cohen et al., 2015). However, I argue that the access
to health products on illegal markets should not systematically differ in mining and non-mining areas, so its
omission should not systematically bias the results.

11Acoording to the 2016 audit report in the DRC, 53% of total malaria funding is for the procurement of
antimalarial commodities, 27% for expenditures related to human resources and 11% is attributed to transport
and storage of commodities. A remaining 9% is dedicated to management and organisation of the malaria
programme (The Global Fund, 2016).

12Note that health workers can also receive top-up payments from donors, and Bertone et al. (2016) find that
they represent a relatively small share of total income of health workers in the DRC (an increase of $17 which
represents about 10% of the total income of nurses who compose the vast majority of health workers in the
sample).

13In the estimation results, I control for the number of health workers and their qualification (nurses vs.
doctors)

14The Congolese organisation that controls the national procurement of drugs (Federation of Central Procure-
ment in Essential Medicines) works in close collaboration with the Global Fund to obtain negotiated prices of
health commodities with manufacturers (see Annexe 14).
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relative small geographic area compared to the country size (as shown in figures 2 and 3), most

health facilities are supplied by a common regional warehouse, and should, therefore, share

identical costs of storage. Lastly, transportation costs from the regional warehouse to health

facilities are likely to differ, depending on the location and accessibility of the health facility.

Nonetheless, these transportation costs represent only 7 percent of the overall expenditures re-

lated to the malaria programme (The Global Fund, 2016), so these variations should only have

a minimal impact on the local allocation of aid.

3 Data

The data used in this research is drawn from two main sources: the District Health

Information System and geographic locations of artisanal mining sites.

District Health Information System. Epidemiological and financial data on health

facilities were extracted from the District Health Information System (DHIS2), a web-based

health information system where health facilities report their routine administrative and clinical

data.15 Reports from health facilities are uploaded monthly to the system and include multiple

epidemiological measures on disease burden, consumption and stock level of health commodities

as well as financial and human resources information. The DHIS2 contains data on all health

facilities in the DRC regardless of the type of structures (hospital, health centres and health

posts) and includes both private and public health facilities, as well as faith-based facilities.16

However, I restrict the data sample to rural health facilities located in the Eastern DRC, where

information on mines is available. In total, there are 1,511 observations located in six provinces:

North and South Kivu, Maniema, Ituri, Tshopo and Tanganyika (see figure 5).

Information on the stock level of commodities is reported at the beginning of each month

(and thus before the consumption of commodities) from January to December 2017.17 Due to

inconsistent procurement of commodities to health facilities, I average monthly the stock level

of commodities over the entire year of 2017.

Antimalarial commodities correspond to all malaria-related health products that are used

for diagnosis (RDT), treatment (ACT) and prevention (SP and ITN). The estimated stock

value is then calculated from the stock quantity of each antimalarial commodity at the facility

level and its their prices. The latter is obtained from the reference pricing list of the Pooled

Procurement mechanism established by the Global Fund (see Annexe 14).18

15The DHIS2 database is used by the Ministry of Health to monitor health service delivery, measure achieve-
ment and track health progress at the difference levels of health care across the country.

16Uncomplicated malaria cases, diagnosis and prevention services can be provided in health posts but patients
seeking clinical services are referred to health centres or hospitals. At the community level, unpaid health workers
may also carry out health promotion activities but there is no information available on the service provided.

17The earliest information on health facilities starts in 2015 with the initial implementation of the DHIS2;
however, the complete coverage was only reached by the end of 2016.

18The Pooled Procurement mechanism set by the Global Fund aims to stabilise prices and ensure market
sustainability of health commodities by pooling demand of countries that participate to the programme (The
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Note that I provide in annexe 6 an extensive discussion on the data quality of DHIS2 in

the DRC and provide evidence of its validity for this analysis.

Mining areas. Obtaining precise information on the burden of malaria at the local level

is a challenging exercise. The Malaria Atlas Project provides a measure of the risk of malaria

transmission based on the suitability of air temperature at national and regional levels (Hay

and Snow, 2006). However, this information does not permit to identify the local needs at

more granular levels, such as local communities. The finest source of information comes from

the 2013 Demographic Health Survey (DHS) in the DRC, whereas information on local malaria

funding is only available from January 2017. Furthermore, the GPS location provided in the

DHS are randomised within a 5 km area for confidentiality purposes. This randomisation poses

a risk of misidentification of the burden of disease when matched with the precise GPS position

of health facilities. I adopt, therefore, a novel strategy that identifies the highest burden of

malaria based on the presence of mines.

A comprehensive list of artisanal mining locations in the Eastern DRC was compiled by

the International Peace Information Service (IPIS) through multiple data collection campaigns

conducted between 2009 and December 2017.19 The dataset contains information on the

geo-location (longitude and latitude) of 3,687 mining sites artisanal mining sites in the entire

provinces of North and South Kivu, as well as in the bordering health zones in the provinces

of Maniema, Ituri, Tshopo and Tanganyika (figure 5).

Geocoding of health facilities. The geographic locations of health facilities are only

partially provided by the DHIS2. To complete the geocoding of the remaining health facilities

in the sample, I triangulate information from the DHIS2 with two other sources of georefer-

enced data: ReliefWeb maps provided by the United Nations Office for the Coordination of

Humanitarian Affairs (OCHA) and OpenStreetMap files. ReliefWeb provides a list of geocoded

health facilities in North and South Kivu related to OCHA’s humanitarian activities and Open-

StreetMap is an open database routinely enriched by field observations, satellite images and

integrated datasets. Overall, the data sample comprises 1,511 health facilities, as shown in

figure 2. Distances between health facilities and their closest mines are obtained from the use

of geostatistical tools available in Geographic Information System (GIS) software.20

Furthermore, data on elevation and terrain features were obtained from NASA’s Shuttle

Radar Topography Mission (SRTM) satellite images.21 Elevation information is provided at

a high spatial resolution (3 arc-second resolution or approximately 90 metres) which makes

Global Fund, 2018).
19IPIS research teams worked in collaboration with the Congolese Ministry of Mines, the Congolese Public

Service for Assistance to Artisanal and Small-scale Mining, the Congolese Mining Register, the Provincial Mining
Divisions and representatives from local civil society organisations. See Weyns et al. (2016) for a detailed
description of the data and collection process.

20ArcGIS 10 and QGIS 2.8 have been used for this exercise.
21Terrain’s elevation data is produced from radar interferometry technique where a satellite equipped with the

instrument collects data to generate a digital elevation map of the Earth (see https://www2.jpl.nasa.gov/srtm/.
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it possible to determine the precise geographical features of each observation in the sample.

In particular, distances from mines to health facilities are calculated based on the elevation

and surface features in order to obtain more realistic distance measures than the straight line

Euclidean distance (see figure 4).22

Table 1 presents summary statistics for key health facility characteristics in mining and

non-mining areas and their difference in means with the full sample. Tables 2 and 3 restrict the

sample to observations that fall respectively within a 8 and 3 km window around the threshold.

Columns (1-3) and (4-6) of each table show the number of observations, sample mean and robust

standard deviations for non-mining and mining areas respectively. Columns (7-9) indicate the

difference in means between non-mining and mining areas, the robust standard errors for the

difference and the p-value of the test of equality of the mean coefficients between the mining and

non-mining samples. Whilst the baseline characteristics present several statistically significant

differences using the full sample of observations, these differences tend to disappear as the

sample shrinks to smaller areas around the mining threshold. In particular, the difference of

antimalarial stock value is highly significant with the largest window selection but it becomes

insignificant as the sample reduces to closer distance from the mining area threshold. The

variations in these differences-in-means with the window selection underline the importance

of identifying a clear strategy to determine the causal effects of mining areas on local aid for

malaria.

4 Empirical framework and estimation

4.1 Setting the RD design

To test whether local aid received by health facilities reflects the burden of malaria among

the populations in their catchment areas, I rely on the stock value of antimalarial commodities.

However, locally assessing the risk of malaria transmission is a challenging exercise. Despite

the fact that health facilities report the monthly number of malaria cases that could be used to

determine the location of the highest burden of the disease, the identification of malaria cases

relies on the availability of RDTs that are financed by external funding. An increase in the

reported number of malaria cases may therefore simply reflect a higher stock of RDTs in the

health facility. Furthermore, there could also exist some inconsistencies in the reported number

of malaria cases across health facilities that would affect the estimation of the distribution of the

22Satellite images of light density from the Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS)
provides a useful source of information on local economic activity (see for examples Henderson et al., 2012;
Michalopoulos and Papaioannou, 2013). The location of economic activity in the vicinity of mining areas could
potentially correlate with lower disruptions in the provision of health commodities nearby health facilities through
better road access or higher consumption of commodities if patients have higher incomes. However the resolution
of the satellite images (approximately 1 km) provides a noisy estimate of the location of economic activity
compared to the precise data-location of mines and health facilities collected in this study. Furthermore, all
mines are located in rural areas where night light density is low, particularly in this region of Africa. Hence,
using night light density might not bring a useful sense of the local variations in economic activity around mining
sites and health facilities.
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burden of malaria. To overcome these issues, I employ an instrument that correlates with the

risk of malaria transmission without being caused by external funding or data quality reporting.

Following the public health literature on malaria and artisanal scale mining, I propose to use

mining areas as the identification strategy.

Since mining areas are located where the exploitation of natural resources is feasible, it

constitutes a natural random selection framework where other local characteristics between

mining and non-mining areas are unlikely to vary discontinuously at the mining boundary.

As a result, the exposure of health facilities to the burden of malaria is a deterministic and

discontinuous function of whether a health facility belongs to a mining area. To test whether

the donors are targeting the highest needs, I use a Regression Discontinuity (RD) design that

evaluates the effect of mining areas on aid for malaria to health facilities.

The central idea behind the RD design is to compare the treatment outcome of units just

above and below a threshold, denoted c. This threshold is based on a running variable (or

score), X, which is, in this case, the distance from a health facility to its closest mine. The

treatment group corresponds to health facilities located within a close distance to mines (below

the mining threshold) whilst health facilities located above the mining threshold form the control

group. The observed outcome is local aid for malaria that is captured by the stock value

of antimalarial commodities, and the border of the mining area constitutes a threshold that

generates a discontinuous probability of getting infected with malaria. I hypothesise that the

mining threshold should also cause a discontinuity in local aid for malaria if donors are responsive

to the local needs related to the disease. In this setting, the RD framework requires that all

other factors influencing the burden of the disease are smooth across the threshold (Hahn et al.,

2001). That is to say, the risk of malaria transmission and aid for malaria on either side of the

threshold should only differ across health facilities in the probability of being in a mining area.

4.2 Estimation Framework

The RD design uses the distance from a health facility to its corresponding mining area

threshold as the running variable. The estimation results provide an average RD treatment

effect of mining areas on local aid for malaria. Specifically, the causal mining effect is estimated

using the following specification

Yi = α+ β1minei + g(X̃i) + β3zi + εi (1)

where X̃i is the centred variable Xi at the cutoff point (X̃i = Xi− c) and minei is an indicator

for mining area (X̃i ≤ 0). The outcome Yi corresponds to aid for malaria to health facility

i, and g(X̃i) is the RD polynomial which controls for smooth functions of geographic distance

from a mine to its closest health facility i.23 The key parameter of interest is β1, which captures

23The local Linear Regression is used in the baseline results, where g(X̃i) = δ1X̃i + δ2mineiX̃i. The presence
of the interaction terms allows for two different regression functions on each side of the threshold. To test
the stability of the findings, I also report results with a cubic model that provides a more flexible form of the
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the RD treatment effect. Under the identifying assumption that health facilities in non-mining

areas form a valid counterfactual, β1 identifies the effects of mines on local aid for malaria. The

vector of covariates zi includes geographic characteristics for facility i: elevation, slope, distance

to the closest regional distribution centre of health commodities, distance to armed conflicts24

and the number of mines in the vicinity of the facility.25 In addition, most health facilities in

the data sample are located in a mountainous region where the average altitude is about 1,300

meters (table 1); using chordal or relative Euclidean distances might then lead to misleading

results.26 I rather rely on a more realistic distance based on slope and surface elevation using

information collected from NASA’s Shuttle Radar Topography Mission.27

The RD approach requires that all relevant factors, besides treatment, vary smoothly across

the mining threshold. The underlying assumption is that health facilities within a small band-

width on either side of the threshold should only differ in their probability of receiving malaria

cases for treatment and not in their environmental conditions or inherent capacity to treat

patients. I assess the validity of this assumption in the results section 5.

For robustness checks, I also present both parametric and nonparametric estimation of the

causal effect of mining area on local aid. The parametric approach assumes a functional form

of the regression function. Define the conditional expectation of the outcome given the distance

variable on each side of the threshold as follows

E
[
Yi(0) |Xi = c+

]
= g(Xi) (2)

E
[
Yi(1) |Xi = c−

]
= β1 + g(Xi) (3)

Under the parametric approach, the functional form of g(.) is assumed to be known and the

estimate of the treatment effect is given by the least-square estimates of β1. Using the full data

sample for the estimation of the RD effect around the threshold is not well-suited to perform

an RD analysis, as its internal validity relies on the comparability of observations around the

boundary: a global polynomial may produce estimates sensitive to observations far away from

the threshold (Lee and Lemieux (2010); Gelman and Imbens (2018)). Hence, I restrict the data

sample to small neighbourhoods around the threshold to ensure the comparability of units on

each side of the threshold.28

Controlling parametrically the function form of the regression function may, however, pro-

polynomial.
24I use data from Armed Conflict Location and Event Data Project (ACLED) which reports georeferenced

information on political violences and protests between January and December 2017.
25The purpose of including baseline covariates is only to explore the sensitivity of the results, as they should

not affect the estimated discontinuity in a RD setting (Lee and Lemieux (2010); Calonico, Cattaneo, Farrell,
et al. (2018)).

26The chordal distance is the distance between two points on a curve and accounts for the spherical shape of
the Earth.

27Slope was calculated from this elevation using ArcGIS 10.4.1; the distance based on slope was calculated
from the path distance function in ArcGIS.

28In the results section, I show that the estimates of the RD effects are robust to various window selections.
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duce biased estimates if the approximating function is insufficiently close to the true function.

Thus, most RD studies employ a nonparametric estimation through local modelling that fits at

any given point x0 a parametric function fitted only to a fraction of observations in a neighbour-

hood of x0 (Fan and Gijbels, 1996). The idea behind this approach is to locally approximate the

unknown conditional mean function by a local polynomial function of degree p, using Taylor’s

expansion in the neighbourhood of interest (under the continuity assumption of the function

g(.)).

4.2.1 Polynomial choice and bandwidth selection

The choice of the polynomial order p and the neighbourhood selection (or bandwidth h)

around the cutoff are critical in determining the treatment effect. High-order polynomials have

the potential to increase the accuracy of the approximated function for a given bandwidth,

but it comes at the cost of high variability; they could also lead to approximations errors near

the cutoff if they over-fit the data (Gelman and Imbens, 2018). Similarly, to ensure that the

characteristics of the treatment and the control group are almost identical, the units should

be selected as close to the threshold as possible given the data availability. Whilst smaller

bandwidths reduce the misspecification bias, they also increase the variability of the estimator.

The common practice is then to use a low polynomial order and control the accuracy of the

approximation by the bandwidth (Gelman and Imbens, 2018). In particular, Hahn et al. (2001)

recommend using the local linear regression due to its better boundary bias properties. In

the following section, I report the baseline results with the local linear model and test their

robustness with a cubic polynomial.

The local linear regression procedure consists of estimating two weighted least squares re-

gressions on each side of the cutoff. To obtain the weights, I use a triangular kernel where

weights decay with the distance from the cutoff point.29 In addition, I follow Calonico, Catta-

neo, and Titiunik (2014) who propose a methodology to obtain robust confidence intervals by

correcting for the bias introduced by the approximation of the RD local polynomial estimator.

The procedure consists of augmenting the confidence intervals centred around the bias-corrected

RD estimator and using a standard error that reflects the uncertainty introduced in the biased

estimation. In the following section, I report the results of the RD treatment effect using this

data-driven methodology, referred to as ”CCT”.

4.3 Mining threshold

As described earlier in the text, I cannot rely on the number of reported malaria cases to

estimate locally the risk of malaria transmission due to donors’ financing of RDTs.

Since mining areas create a conducive environment for malaria proliferation, the risk of

malaria transmission in the catchment area of a health facility should be a function of the

29Following Imbens and Lemieux (2008), the estimation results should be less sensitive to the choice of the
kernel function than to the bandwidth selection.
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distance between the facility and its nearest mine. I define a mining area as the maximum

distance from a mining site that miners are travelling to seek malaria treatment. This distance

is crucial in my empirical strategy as it will be used to determine the mining threshold separating

the control and treatment groups.

I first exploit the findings from the literature on patients’ utilisation of health services in

rural areas. Stock (1983) shows that in Nigeria 89% of patients in rural health centres are

coming from a distance that is less than 10 km. In the malaria context, Noor et al. (2003)

explore the patient’s travelling distance to health facilities in Kenya and find that the median

distance is 8 km for patients in rural areas. Likewise, the Demographic Health Survey (DHS)

conducted in 2007 and 2013 in the DRC reveals that the patient’s travelling to a health facility

is less than 2 hours for 75% of the rural population - which would represent a distance ranging

from 6 to 8 km at the average human walking speed ranging from 3 to 4 km per hour.30

Second, I examine the distance that separates mining sites from the living place of miners

to account for the possibility that a health facility and a mining site are situated in opposite

directions from the location of a miner’s household. Dibwe (2008) examines working conditions

in artisanal mining sites in the Katanga province of the DRC and finds that more than 97%

of miners are living within 7 km from the mines. More recently, Faber et al. (2017) exploit

data on miners from a random sample of 150 mining areas in the DRC and show that that the

average traveling distance of miners from their household is 7 km.31 Based on these findings, I

hypothesise that the maximum distance separating a mine to a health facility with a significant

share of miner patients should range between 13 and 15 km.

Next, I analyse how this range of mining thresholds fits my data sample. Specifically, the

threshold should indicate a discontinuity in the burden of malaria. I define malaria prevalence

as the mean share of malaria cases reported by a health facility out of the total population of

its catchment area. Figure 6 presents the malaria prevalence as a function of the distance from

a health facility to its closest mining site. Each point plots an average value within a bin that

represents a 1 km interval. Figure 7 shows the non-parametric estimations of malaria preva-

lence conditional on the distance to the closest mine, using a kernel-weighted local polynomial

regression of order 1. In both figures, the malaria prevalence is found to fluctuate within a

constant interval that ranges from approximately 12% to 18% with the first ten kilometres from

the mining sites. A sharp decrease in the burden of malaria occurs at a distance lying between

14 and 15 km from mines, where the malaria prevalence falls by more than 5%. The fluctuations

in the disease prevalence are not recovering from the decrease beyond this point where the 95%

confidence interval ranges from about 7% to 14%, which suggests a reduced burden of malaria

for all health facilities located beyond 15 km. This visual evidence is remarkably consistent with

30Note that the limited paved road network in eastern DRC may further reduce the ability to travel large
distances.

31Faber et al. (2017) also find that the median travelling distance of miners is 3 km, which suggests the
presence of outliers with potentially far greater distances. However, the quasi absence of road network in the
Eastern DRC, where my data sample is, should reduce the risk of having large travelling distance among miners.
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the findings from the literature.32 I, therefore, select the midpoint distance between the two

sides of the jump as the mining threshold, corresponding to 14.5 km. The selected threshold

should ensure that patients are not seeking health services above or below this boundary. In

the next section, I also assess the robustness of the results when varying the mining threshold.

An additional concern relates to the potential smooth geographic variations in aid for

malaria. As argued above, the discontinuity in the burden of malaria at the boundary of

mining areas should induce a change in donors’ behaviour if they are accurately targeting the

highest needs related to malaria. However, donors might also smoothly respond to the discon-

tinuity in the risk of malaria if the density of health facilities is high at the boundary of mining

areas. One explanation is that other factors besides the distance of a health facility from a mine

might play a role in the decision making of malaria patients when they select a facility (such

as quality of health services). To explore this possibility, I examine the geographic distribution

of health facilities around the mining threshold. Figure 9 depicts the cumulative distribution

function of health facilities conditional on the distance to the nearest facility. The data sam-

ple is restricted on health facilities that are located within 4 km from a mining threshold(blue

dashed line) and within 10 km from the threshold (red line). The graph reveals the scattered

distribution of health facilities in the Eastern DRC. The minimum distance between two health

facilities is higher than 5 km for more than 70% of health facilities located within 10 km from

the threshold, and almost 50% of health facilities within 4 km from the threshold have the

closest facility located beyond 10 km. Only 10% of facilities are separated by less than 3 km.

Under such conditions, malaria patients may have very limited possibility to select a health

facility on other criteria than distance. Similarly, the probability of occurrence that two health

facilities are separated by only a small distance across the mining threshold is very low. This

evidence suggests that donors should simply not have the opportunity to smooth aid allocation

within small distances across the threshold.

In a sharp RD design, the probability of getting malaria case in health facilities should fall

abruptly from 1 to 0 at the mining threshold, an assumption that is unlikely to hold since other

external factors affecting the risk of malaria transmission also exist in non-mining areas and

not everyone is at risk of getting infected with the disease within mining areas (for example,

some individuals may naturally acquire immunity to malaria due to long exposure to infectious

mosquito bites). Yet, the disproportionate burden of malaria induced by mining areas creates

a discontinuity in the share of malaria cases around the threshold, as shown previously. To

be more precise, I redefine the problem as follows: let p be the share of malaria cases out the

total population in the catchment area of the health facility, and pm the minimum share of

malaria cases that characterises a health facility located in an area with high burden of malaria.

I further assume that the probability that a facility receives a minimum share pm of malaria

cases out of the total population that it serves is uniformly distributed within a mining area.

32Although this distance falls within a similar range to the findings from the literature, the concern related to
the potential endogeneity issue caused by the use of RDTs remains. In the result section, I further discuss about
this concern when presenting the results of the decomposition of the RD effects by commodity.
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The uniform distribution can be a good approximation of the true probability distribution if

the latter does not decrease significantly between a mining site and its corresponding threshold.

This assumption is supported by the fact that the risk of malaria transmission by mosquito

bites is significantly higher in the presence of mosquito breeding sites such as mines, leading to

”hotspot” areas where the disease is endemic (Carter et al., 2000).33 As a result, all neighbouring

populations of mining sites that fall under mosquito flight range distances are intensively exposed

to mosquito bites; within small geographic distances from the breeding spots, the risk of malaria

transmission should be high and spatially homogeneous.

It follows that

Pr(p ≥ pm |Mine = 1) = 1

and

Pr(p ≥ pm |Mine = 0) = 0

where Mine is an indicator for mining area. This setting forms a sharp RD design where only

units located below the threshold (mining area) receive the treatment (malaria cases greater

than pm).

Finally, I remove hospitals from the sample selection as patients tend to travel more distance

to hospitals than to smaller health centres (Stock, 1983). The risk is that they may invalidate

the choice of the threshold if patients from mining sites seek treatment in non-mining areas.

In addition, the National Malaria Programme indicates that malaria curative treatments in

hospitals should primarily relate to severe malaria cases whereas health centres should offer

treatment for simple malaria cases (MSP, 2011). This corroborates with the fact that all health

facilities in the sample have stocks of antimalarial commodities to diagnose and treat simple

malaria cases. As a result, I hypothesise that patients should not seek treatment in a hospital

when they have symptoms related to simple malaria case.34

Lastly, the malaria literature has documented that children are at a higher risk of malaria

transmission than adults (Smith et al., 2007). This fact could pose a threat on the comparability

of the treatment and control groups if mining areas are mostly deprived of children. Although

there is imprecise information on child labour in mines, recent evidence suggests that children

in the DRC may often engage in mining activities, regardless of international labour standards

on child labour (Faber et al., 2017).35

33To be precise, (Carter et al., 2000) show that the distance from the breeding sites where the risk of malaria
transmission is the greatest ranges from 2 to 3 km

34A caveat is that the existence of user fees could also play a role in the decision of patients to seek treatment
to a health facility. Unfortunately, no information on setting user fees in health facilities in these regions was
found; I can, thereby, only assume that user fees should not vary significantly among public health facilities
within small geographic distances.

35The Multiple Indicator Cluster Survey (MICS) conducted in the DRC in 2010 reveals that more than 60%
of children in Eastern DRC are engaged in labour activities including mining. More recently, Faber et al. (2017)
use a survey from a random sample of 150 mining areas in the DRC and find that about 13% of miners were
aged below 18.
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5 Results

Before presenting the estimation results for the effects of mines on local malaria funding, I

start by providing evidence of the plausibility of the two main identification assumptions of a

valid RD design: continuity around the threshold (no self-selection) and random assignment.

5.1 Validity

The assumption of the RD design would be violated if health facilities can manipulate the

running variable, the geographic distance from the health facility to its closest mine. However,

this assignment does not leave much room for strategic behaviour as most of artisanal mining

activities should be more recent than the presence of health facilities.36 To investigate the

possibility of manipulation of the running variable, McCrary (2008) suggests to examine the

distribution of units on both side of the threshold: a systematic manipulating behaviour would

be revealed by a peak in the distribution of units on one side of the threshold as health facilities

select their preferred group. The objective of the test consists of identifying a discontinuity in

the density of health facilities around the threshold that would indicate that units are altering

their assignment. Figure 8 presents a visualisation of the density function of the running

variable, which does not reveal obvious discontinuity around the threshold. Note that the

running variable is centred at the threshold point, so negative and positive distance correspond

respectively to mining and non-mining areas. The smoothness of the density suggests there is

little scope for selective sorting of health facilities across the RD threshold.

To formally assess the validity of the continuity assumption, I also perform several density

continuity tests of the running variable based on a data-driven procedure proposed by Cattaneo

et al. (2017) to explore the possibility of self-selection of units around the threshold. Table 4

presents the results of the density test, where the null hypothesis corresponds to equal density

functions of the treatment and the control group. The first two columns correspond to the

choice of the bandwidth (in metres) on each side of the threshold, columns (3) and (4) indicate

the number of observations used and the last column gives the p-value of the test. I perform

the test using two different MSE optimal bandwidth on each side of the threshold (Cattaneo

et al., 2017) for which the results are reported in the first row. The second row corresponds to

the density test which determines the possibility of equality of the two cumulative distribution

functions of the running variable on each side of the threshold. In both cases, the results fail to

reject the null hypothesis of the continuity assumption.

The falsification (or placebo) test provides further evidence about the plausibility of the

identification strategy. Placebo covariates are the pre-intervention (or predetermined) covariates

that should not be affected by the mining area under a valid RD design. For each of these

covariates, I perform a local polynomial regression where the predetermined covariate is the

outcome variable, in order to test the existence of an RD treatment effect. Figure 11 provides a

36Revamping health infrastructures in the DRC is a well-recongized priority, so it is unlikely that the con-
struction of health facilities preceded recent mining exploitations (MSP, 2017).
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visual effect of the mining area on the predetermined covariates, where the running variable is

the distance to mines centred around the threshold (mining and non-mining areas corresponds

respectively to the right and left hand side of the threshold). Importantly, these graphs do not

present visual evidence of a discontinuity between mining and non-mining areas for each of the

predetermined covariates.

5.2 Mining effect on local malaria funding

Table 5 reports the parametric estimates of the effect of mining on the outcome of interest

and the placebo outcomes from equation (1). Columns (1) and (2) report the OLS estimates

of the RD treatment effect on local aid for malaria using a linear model in distance. The

corresponding window selection restricts health facilities to be located within 3 km from the

mining threshold. Columns (3) and (4) present the OLS estimates when health facilities fall

within 8 km from the threshold, and I use a cubic polynomial model to give more flexibility in

the approximation of the regression function as the latter spans more observations. For each

window selection, I explore the sensitivity of the results to the inclusion of baseline covariates.

As expected in a valid RD design, the coefficient estimates are not affected by the covariates

whilst the precision slightly improves. The RD estimates on local aid for malaria indicate a

significant positive effect of mining areas that is stable across the window selections. Specifically,

the presence of mines induces an increase in local aid per capita between $0.06 and $0.07 at the

health facility level either when facilities are restricted to be near the threshold (less than 3 km)

or further away (within 8 km); these effects are statistically significant, even with the largest

window. With an average local population of 10,000 in their catchment areas, health facilities

within mining areas receive an additional aid for malaria that ranges between $600 and $700

per month.

The bottom part of the table provides the results of placebo tests which investigate the pres-

ence of a mining effect on the outcomes of four pre-determined covariates: total expenditures,

total revenue, number of health workers and number of births per health facility. Selecting these

covariates enables to test the existence of significant discontinuity across the mining threshold

in some of the leading features of health facilities’ performance that could relate to local aid

absorption capacity. Expenditures and revenue capture the financial dynamic of health facilities

whilst the number of births and the number of health workers can capture the ability of health

facilities to attract and treat patients respectively. Importantly, these indicators could be causal

factors for local aid targeting if donors are able to identify health facilities’ characteristics. A

systematic difference in these placebo covariates between mining and non-mining areas would

then invalidate the RD design. However, the reported p-values indicate that mining areas have

statistically insignificant effects on these placebo outcomes.

Table 6 documents the non-parametric estimates. The RD treatment effect corresponds to

the difference of the estimates of two locally weighted regressions on each side of the cutoff using

a triangular kernel function. Following Calonico, Cattaneo, and Titiunik (2014), the reported
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results are based on robust confidence intervals and MSE-optimal bandwidth.37 Column (1)

estimates the baseline regression on the sample defined by the MSE-optimal bandwidth and

using a local linear polynomial in distance to the threshold. Column (2) adds baseline covariates

corresponding to geographic characteristics (elevation and slope) and the number of mines in

the surrounding area of the health facility. Columns (3) and (4) replicate the first two columns

using a local polynomial of order 3.

The estimates of the contribution of mines on local aid for malaria are all statistically

significant and consistent with the parametric results, ranging from $0.06 to $0.07 per capita.

Once again, the bottom part of the table documents the results of the placebo tests on the

predetermined covariates and provide evidence of the validity of the RD design.

5.3 Sensitivity analysis

Choice of neighbourhood. Although the estimates of mining areas on local aid for

malaria are consistent across both parametric and non-parametric approaches, they might

be sensitive to the choice of neighbourhood. In particular, choosing smaller bandwidths has

the advantage of reducing the misspecification error related to the approximation of the true

function around the threshold, but it comes at the price of greater variability of the RD

estimate. The first two graphs in figure 12 present the sensitivity of the coefficient of aid for

malaria to the bandwidth selection and the polynomial order in the non-parametric approach.38

The bandwidth selection following Calonico, Cattaneo, and Titiunik (2014) is referred as

”CCT” on the x-axis of the first graph, and is also used to obtain the RD estimates for varying

polynomial orders in the second graph. These graphs reveal that the estimates are remarkably

constant across varying neighbourhoods around the threshold and specification models.

Mining threshold. The third graph in figure 12 presents the sensitivity of the RD

estimate to the choice of the threshold. This exercise allows to test the validity of the 14.5

km mining threshold described in section 4 and enables to estimate an upper bound on the

discontinuity effect on antimalarial stock value by varying the threshold distance between

mining and non-mining area. As expected, the RD coefficient estimate is sensitive to the

location of the threshold as the latter is a critical element of the RD design. The variations of

the coefficient estimate provide suggestive evidence for the validity of the 14.5 km threshold

selection. The RD estimates are alternately positive and negative but centred around zero

when the threshold is below 14.5 km, that is, supposedly located within the mining area. This

finding is consistent with the assumption that the mining border is at least located at a 14.5

km distance from the mine: given the uniform distribution of the burden of malaria within

37The MSE-optimal bandwidth selection and point estimators are specifically chosen to include covariates (see
Calonico, Cattaneo, Farrell, et al. (2016) who propose efficient driven methods to incorporate covariates in the
RD design).

38The sensitivity analysis leads to similar results with the parametric approach.
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the ”true” mining area, there should be little variations in aid for malaria between the health

facilities of these areas. Thus, the average difference of aid for malaria between the treatment

and the control group conditional on the distance from the mine should not be systematically

positive or negative when the threshold of the RD design is located within the ”true” mining

area. Similarly, for every threshold located beyond the ”true” threshold of the mining area,

the burden of malaria should decay gradually with distance as the mining effects shade off. The

RD estimates should once again be centred around zero, assuming no other external factors

would cause a systematic difference in aid for malaria between the treatment and control group.

The point estimator of interest is then located at the ”true” mining area threshold, for which

the RD estimate should reach its maximum value: if the treatment and the control group are

correctly identified, the RD strategy based on the ”true” threshold is cleared from any unit

that would incorrectly be assigned to the treatment or control group, causing a downward bias

estimation of the RD effect. The bottom graph in figure 12 indicates that the upper bound of

the RD estimate is obtained with the 14.5 km threshold which has the highest point estimator

and is the only estimate whose 95% confidence interval is entirely positive.

Aid targeting within mining areas. Donors could also perfectly observe the distribution

of the needs within a mining area and decide to restrict the allocation of malaria resources to

the closest health facilities from mining sites.39 This donor’s strategic decision could have

detrimental implication on the availability of care in health facilities away from the mining site,

but it could arguably ease the targeting approach if mining sites have better road access within

mining areas or if donors choose to strictly targeting miners. Importantly, this assumption

would explain the relative small difference that is observed in aid for malaria between health

facilities around the mining threshold. I explore this hypothesis in figure 13 by analysing how aid

for malaria at the facility level relates to the distance to its closest mine. The figure shows the

non-parametric estimations of local aid conditional on the distance from a health facility, using

a kernel-weighted local polynomial regression of order 1. The kernel function is epanechnikov

and the the bandwidth corresponds to 700 metres. The y-axis represents local aid for malaria

per capita at the health facility level and the x-axis corresponds to the distance from the health

facility to its closest mine in metres. The shaded area denotes the 95% confidence interval of

the coefficients. The plot shows a relative constant share of aid for malaria in health facilities

located within mining areas, independent of the distance from the mine. This graph, therefore,

suggests that there is no evidence that donors choose to target the closest health facilities around

mining sites.

39As discussed above, the burden of malaria should be equally distributed within a mining area so this donor’s
approach would entail inequalities in treatment access among patients within the area.
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5.4 Decomposition by commodity and additional tests

I now turn to the decomposition of the mining effects by aid allocated to each antimalarial

commodity. The baseline results, presented above, focus on all commodities to locally capture

the amount of aid for malaria. However, each commodity has a specific role in tackling the

disease burden, which can be decomposed in three sub-categories: prevention, identification

and curative treatment. The aid decomposition enables to examine how the burden of malaria

affects the allocation of aid resource to each of these sub-categories.

Figure 10 provides a visual discontinuity on the stock value of ACT and SP against the

distance to the mining threshold in panel A and B respectively. Both plots fit a local cubic

polynomial in distance; the jump in outcome at the threshold appears much larger for the stock

value of SP than ACT, although in both cases, the effects fade away with distance.

Table 7 reproduces the table with the parametric regressions presented for the effects on

local aid for malaria. Column(1) corresponds to the OLS estimates of the mining area effects

on each antimalarial commodity using a 3 km window around the threshold and a linear model

in distance. The second column reports the OLS estimates for observations falling in a 8 km

window from the threshold and using a cubic model in distance. The mining effect is statistically

significant for the stock value of all antimalarial commodities for both window selection except

for ITN. The highest mining effects are found to be on aid for SP and ACT for which the stock

value increase by $0.04 and $0.02 per capita respectively, whilst the effect on the stock value of

RDT is marginal (less than $0.01 per capita).

Table 8 shows the results with the non-parametric approach, where column (1) and (2) esti-

mate respectively a local linear polynomial and a local cubic polynomial in distance. Compared

to the parametric approach, the estimate of aid for ACT and SP are lowered by approximately

$0.005 per capita when using a local linear model; the estimate for RDT remains unchanged.

When the specification involves a local cubic model in distance, only the stock value of SP and

RDT are statistically significant, and aid to SP reaches almost $0.05 per capita.

Together, the outcomes from parametric and non-parametric estimations illustrate impor-

tant findings. First, the effects of mining areas on aid allocated to each antimalarial commodity

are relatively constant with respect to the distance from the mining threshold, which attests

to the robustness of the results. Second, the mining effect on aid for malaria is largely driven

by the effect on aid for SP which accounts for 65% (0.046/0.072 = 0.64) of the overall mining

effect on local aid for malaria. The remaining part of additional aid in mining areas is mostly

devoted to ACTs (about 22 %) and RDTs (11 %).

Disentangling the mining effects on antimalarial commodities. A potential concern

with the increase in aid for SP commodity relative to ACT is that health facilities within mining

areas might be subject to systematically more frequent disruptions in the provision of a specific

commodity for reasons inherent to the presence of mines. To assess this eventuality, table 9

documents the mining effects on the monthly number of stock-out days, consumption and the
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share of consumption in the stock level for each antimalarial commodity. Column (1) reports the

estimates for SP and columns (2)-(5) decompose the mining effects for each age category of ACT

treatment that corresponds to age-specific dosage. The last two columns present the estimates

of ITN and RDT respectively. The RD estimates of the monthly number of stock-out days

are statistically insignificant for all commodities, indicating that mining areas do not disrupt

the provision of a specific commodity. Monthly consumption is statistically significant for all

commodities except for ACT to children between 6 and 13 and RDT. This result confirms

the predominance of the burden of malaria within mining areas through increased demand

in antimalarial medicines, in particular among children between 1 and 5 for whom the ACT

consumption rose by 4%. The bottom part of the table reveals that the share of consumption in

the stock level of each commodity has a negative coefficient estimate which is explained by the

higher stock level of antimalarial in mining areas. The estimates are only statistically significant

and negative for SP and RDT, indicating that the increase in demand (monthly consumption)

within mining areas for these two commodities is lower than their increase in supply. This last

result corroborates with the previous finding of SP receiving the highest share of aid for malaria.

As a final test, I explore the existence of systematic differences between mining and

non-mining areas in the sub-populations targeted by donors. As previously described, ACT

treatments are characterised by specific dosages which relate to four different age categories

(below 1, between 1 and 5, between 6 and 13 and above 13) whilst SP is a preventive treatment

specific to pregnancy. Unfortunately, data limitation prevents from exploring the distribution

of age population between mining and non-mining areas. I can therefore only assume that

this distribution is similar in the two areas and I rely on the additional burden of malaria

caused by the mines as the unique driver for the provision of ACT drugs.40 Regarding SP

preventive treatment, the commodity is given to pregnant women during routine antenatal

care (ANC) visits (WHO, 2018). I examine the presence of a discontinuity in the population

of pregnant women by using the reported number of ANC visits.41 Table 10 documents the

effect of mining areas on the share of ANC visits per capita and malaria prevalence using

non-parametric estimations. Columns (1) and (2) denote respectively the local linear and cubic

models. Malaria prevalence is defined as the share of malaria cases received in health facility

per local population. The RD estimate for the share of ANC visits is statistically insignificant

which could reasonably be interpreted as an equal distribution of pregnant women between

mining and non-mining areas. This last result, combined with the findings on the similarities

in the number of stock-out days for all commodities between the two areas, provides suggestive

evidence that malaria prevalence should be the primary causal factor for the determination of

40One concern with this assumption is that mining areas could be characterised with lower rate of children
due to the health and safety hazards of mines. However, as described in section 4, recent studies on child labour
suggests that the presence of children should not be significantly lower within mining areas.

41For the validity of the test, I hypothesise that antenatal care attendance among pregnant women do not
systematically differ in mining areas, an assumption that is not directly testable. Although pregnant women are
banned from mining activities, mining work is also more lucrative for them than any other activities surrounding
mining areas (Buss et al., 2017). Hence, I suspect that pregnant women in mining areas should have little
incentives to move home during their pregnancy and attend a different health facility for antenatal care.
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local aid for malaria.

Equity of local aid. Whilst local aid for malaria increases by $0.06 per capita in mining

areas, the decomposition of the mining effects reveals an unequal distribution of resources

allocated to antimalarial commodities. I further document how the distribution of local aid for

malaria is matching the needs by examining the variations in the stock of commodities with

respect to the change in burden of malaria between mining and non-mining areas. The bottom

part of table 10 corresponds to the RD estimation of mining effects on malaria prevalence using

a local linear polynomial. In mining areas, the number of malaria cases increases between 7

and 8 percent when the nonparametric estimation employs a local linear and a cubic model

respectively; both results are statistically significant.42 In baseline results presented earlier,

mining areas were found to have a small but significant effect on aid for malaria. The rise in

local aid could underestimate the coefficient of the mining effect on malaria prevalence if aid for

malaria contributes (through preventive treatment) to reduce the burden of the disease. The

obtained result on malaria prevalence should therefore represents a lower bound estimate.

Next, I quantify the results on local aid for malaria by estimating the theoretical costs that

should be borne at the health facility level for the prevention, diagnosis and treatment for an

additional unit of risk of malaria transmission. Using the prices of antimalarial commodities

from the Pooled Procurement mechanism of the Global Fund (figure 14), the total monthly

estimated cost for providing malaria treatment and prevention per capita is $1.25.43 This

result corroborates with the finding from WHO (2015a) who estimates that the cost of curative

treatment is approximately $1 in Sub-Saharan African countries. The total cost is decomposed

as follows: ACT $0.7, SP $0.09, RDT $0.25 and ITN $0.21.

The amount of aid required for financing diagnosis, prevention and treatment of malaria

relates to the disease burden within a given area. Figure 15 plots the evolution of malaria-

related costs with the additional risk of malaria transmission. The horizontal red dashed line

shows the additional aid for malaria that is received in high burden areas according to the

nonparametric RD estimation (table 6) of the mining effect. The graph indicates that local aid

can potentially cover the costs associated to the burden of malaria when the additional risk of

malaria transmission does not exceed 4.4%. Beyond this point, health facilities within mining

areas do not get their share of aid.

What is the actual risk of malaria transmission? As discussed above, I find that malaria

prevalence increases by at least 7 percent in mining areas. At this rate, local aid should increase

42Malaria cases are usually detected at the facility level by RDTs, the latter being provided mostly by donors.
This could pose a threat of endogeneity bias but table 9 reports insignificant effects on the number of stock-out
days of RDTs between mining and non-mining areas. This means that the number of detected cases should not
be more constrained by the availability of RDT in health facilities located in non-mining area.

43To calculate the overall monthly financial costs per capita, I rely on the decomposition of the Congolese
population that was taken from the United Nations World Population Prospects: 57 percent of adults (above
14), 25% of children between 6 and 14 and 16% that are less than 5. The share of pregnant women and children
who are receiving SP medicines is assumed to be 25% following the estimations in the National Health Accounts
in the DRC (MSP, 2017).
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by a minimum of $0.09 per capita to fully meet the needs related to malaria. On the other hand,

the results of both parametric and nonparametric RD estimations of the mining effects on local

aid indicate that the increase in aid for malaria ranges between $0.05 and $0.06. Presumably,

this result implies that at least more than one third of the additional malaria needs in areas

with high burden of the disease is not financed by aid.

Altogether, these results suggest two main conclusions on the patterns of aid targeting. First,

the additional risk of malaria transmission is not followed by a proportional increase in local

funding for malaria curative treatments. Given the cost of malaria prevention and treatment

approximately equals to $1.25 per patient, a minimum 7 % increase in malaria prevalence would

require an additional $0.09 of aid per capita whilst health facilities are found to receive less than

$0.06 per capita.

Second, aid for preventive commodities for pregnant women (SP) are more responsive to

the change in the risk of malaria transmission, although this disproportionate response raises

concerns about the effectiveness of aid for this commodity. Whilst the estimated cost of SP

represents approximately 7% of the overall costs of providing antimalarial commodities, SP

accounts for more than 65% of the additional aid allocated to high risk areas. On the other

hand, the share of ACT is 56% in the overall antimalarial cost whilst only 22% of aid is targeting

it. There is no evidence that external funding for insecticide-treated bed nets (ITN) rises among

mining areas.

6 Discussion and Conclusion

Targeting of health needs is central in low-income countries with high disease burden and

limited resources (Dupas and Miguel, 2017). Important health gains could be achieved through

more precise allocation of resources to areas with the greatest health risk.44 In this study, I

exploit the variations in the burden of malaria between mining and non-mining areas to estimate

the response of donors to local needs. Using a novel data source to track aid for malaria at the

health facility level, I find no evidence to support the assumption that donors are accurately

targeting areas with the greatest burden of malaria. Although I document a significant effect of

local variations in the burden of malaria on local aid for the disease, the evidence also suggests

that local populations with the highest burden of malaria do not receive the highest share of

aid for malaria comparatively to those living in neighbouring areas with reduced exposure to

malaria infection.

First, the small increase in local aid for malarial does not match the costs incurred for

the extra burden of malaria in mining areas. In particular, my findings suggest that local aid

is covering at maximum 60 percent of the additional costs induced by the additional risk of

malaria transmission. Second, the decomposition of aid by targeted population reveals that

44As a recent example in the DRC, Dolan et al. (2019) show that national insecticide-treated bed net campaigns
against malaria between 2009 and 2013 achieve significant mortality reduction among children under 5 only in
areas with the highest risk of malaria transmission.
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resources are unequally distributed with respect to local health needs; this inequality is in turn

exacerbated by the overall mistargeting of aid for malaria.

These results pinpoint some limitations in the actual aid allocation and suggests that aid

could be more closely tailored to local health needs. Better allocation of aid could generate

health efficiency gains and reduce inequities in treatment access for patients across areas with

different burdens of malaria (difference in allocated aid) and within areas (across sub-group

populations). In cases where health information is fragmented and difficult to collect, donors

could seek the engagement of local community leaders in aid targeting decisions (Alatas et al.,

2012).

My findings resonate with the literature on geographical targeting of aid at subnational

levels. Öhler et al. (2017) find no evidence that funding from World Bank to anti-poverty

projects is allocated to the poorest areas within countries in Sub-Saharan Africa. Briggs (2018)

shows that aid from World Bank and African Development Bank targets comparatively richer

geographic areas across African countries. In the health sector, Kotsadam et al. (2018) show

that external funding is allocated to subnational areas of Nigeria with lower infant mortality.

More broadly, my findings question the effectiveness of aid in settings with limited infor-

mation about local needs, and challenge the view that donors possess sufficient knowledge to

make optimal decisions of resource allocations (Easterly, 2006). The results best support the

assumption that aid mistargeting reflects donors’ inaccurate information about local population

needs. The fact that the distribution of local funding per commodity does not equally match

the needs of each targeted population could be explained by two factors: the incomplete infor-

mation of donors about local health needs or ineffective supply chains of health products leading

to poor availability of medicines in health facilities (Yadav, 2015). However, the evidence does

not support the latter: the number of stock-out days for each antimalarial commodity does

not systematically differ among areas with varying risk of malaria transmission. This finding

partially rules out the role of the supply chain of health products to explain the difference in

the stock of antimalarial commodities between local areas with different burden of malaria.45

Hence, the results suggest that mistargeting is primarily caused by the decisions of donors.

The results of this research only apply to the malaria programme in Eastern DRC, and it

would be speculative to draw general policy implications. Rather, the findings in this paper

underscore important research questions. First, I have shown the critical importance of focusing

on a disease-specific programme when documenting the distribution of health resource alloca-

tion. Further research on other highly financed diseases (such as HIV/AIDS) could help to

uncover the root causes of targeting deficiencies. Second, the fact that funding for some health

commodities (ACT, SP) is more sensitive to local variations in the burden of malaria than oth-

ers (RDT, ITN) suggests that donors have imprecise information about the local variations of

45I cannot completely exclude the possibility that the supply chain of medicines locally affect their provision
level to health facilities located in areas with high disease burden without causing systematic stock-outs. However,
this eventuality is highly improbable: the quantity of health commodities provided to the facility could hardly
remain systematically low without experiencing more frequent stock-outs.
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the disease burden. An alternative explanation is that health workers might be more successful

in signalling the need for being provided some specific health commodities than for other health

commodities. The signalling efforts of health workers would then induce a partial adjustment in

donors’ targeting decisions, improving thereby the aid allocation for the specific commodities.

Future research on these questions is important to improve health aid targeting.
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Dolan, C. B., BenYishay, A., Grépin, K. A., Tanner, J. C., Kimmel, A. D., Wheeler, D. C., and

McCord, G. C. (2019). “The impact of an insecticide treated bednet campaign on all-cause

child mortality: A geospatial impact evaluation from the Democratic Republic of Congo”.

PloS one, 14(2), e0212890.

Dupas, P. and Miguel, E. (2017). “Impacts and determinants of health levels in low-income

countries”. In: Handbook of economic field experiments. Vol. 2. Elsevier, pp. 3–93.

27



Easterly, W. (2006). “Planners vs. searchers in foreign aid”. Asian Development Review, 23(2),

pp. 1–35.

Esser, D. and Bench, K. K. (2011). “Does global health funding respond to recipients’ needs?

Comparing public and private donors’ allocations in 2005-2007”. World Development, 39(8),

pp. 1271–1280.

Faber, B., Krause, B., and Sánchez de la Sierra, R. (2017). “Artisanal Mining, Livelihoods,

and Child Labor in the Cobalt Supply Chain of the Democratic Republic of Congo”. UC

Berkeley Center for Effective Global Action White Paper.

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications. Chapman &

Hall/CRC.

Galasso, E. and Ravallion, M. (2005). “Decentralized targeting of an antipoverty program”.

Journal of Public economics, 89(4), pp. 705–727.

Gallup, J. L. and Sachs, J. D. (2001). “The economic burden of malaria”. The American Journal

of Tropical Medicine and Hygiene, 64(1 suppl), pp. 85–96.

Gelman, A. and Imbens, G. (2018). “Why high-order polynomials should not be used in regres-

sion discontinuity designs”. Journal of Business & Economic Statistics, pp. 1–10.

Hahn, J., Todd, P., and Van der Klaauw, W. (2001). “Identification and estimation of treatment

effects with a regression-discontinuity design”. Econometrica, 69(1), pp. 201–209.

Hay, S. I. and Snow, R. W. (2006). “The Malaria Atlas Project: developing global maps of

malaria risk”. PLoS medicine, 3(12), e473.

Henderson, J. V., Storeygard, A., and Weil, D. N. (2012). “Measuring economic growth from

outer space”. American Economic Review, 102(2), pp. 994–1028.

Hentschel, T., Hruschka, F., Priester, M., et al. (2002). “Global report on artisanal and small-

scale mining”. Report commissioned by the Mining, Minerals and Sustainable Development

of the International Institute for Environment and Development, 20(08), p. 2008.

Imbens, G. and Lemieux, T. (2008). “Regression discontinuity designs: A guide to practice”.

Journal of Econometrics, 142(2), pp. 615–635.

Knoblauch, A. M., Winkler, M. S., Archer, C., Divall, M. J., Owuor, M., Yapo, R. M., Yao,

P. A., and Utzinger, J. (2014). “The epidemiology of malaria and anaemia in the Bonikro
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Figure 1: Share of donors and domestic spending in total malaria investment

Notes: The above figure documents the evolution of the contributions of external aid and government spending
to the national malaria programme, which highlights the strong dependence of the health system of the country
on donors. This information was extracted from the National Health Accounts of the DRC, MSP (2017). External
aid and government spending amount respectively to $160 million and $9 million in 2017.
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Table 1: Summary statistics and difference-in-means, full sample

Outside mining area Within mining area Difference-in-means
Obs. Sample mean s.d. Obs. Sample mean s.d. Diff-in-means s. e. p-value
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Geographic characteristics
Elevation (in metres) 489 1,251.23 24.84 738 1,218.87 19.27 -32.36 31.44 0.30
Slope 489 5.03 0.30 738 6.34 0.31 1.31 0.43 0.00
Distance from closest facility (km) 489 5.56 0.28 738 4.63 0.19 -0.93 0.34 0.01
Distance from closest hospital (km) 436 20.78 0.96 700 20.22 0.68 -0.56 1.18 0.63

Facilities characteristics*

Antimalarial stock value 446 0.08 0.00 652 0.10 0.00 0.02 0.01 0.00
Total other drugs stock value 474 0.11 0.01 724 0.13 0.01 0.02 0.01 0.01
Revenue 477 0.90 0.07 709 0.88 0.07 -0.02 0.10 0.85
Investment 316 0.07 0.01 520 0.06 0.00 -0.01 0.01 0.21
Payroll tax 394 0.03 0.00 595 0.02 0.00 -0.01 0.00 0.03
Government bonus 335 0.04 0.00 557 0.05 0.00 0.01 0.01 0.00
No. nurses 469 0.00 0.00 705 0.00 0.00 0.00 0.00 0.00
No. births 451 0.02 0.00 686 0.02 0.00 0.00 0.00 0.46

Local Population** 489 14.43 0.82 738 12.20 0.37 -2.24 0.90 0.01

No. days antimalarial stock outs
Insecticide-Treated bed Nets 423 6.47 0.31 583 5.87 0.24 -0.60 0.40 0.13
Rapid Diagnostic Tests 391 2.83 0.51 524 2.09 0.16 -0.74 0.53 0.16
Sulfadoxine-Pyrimethamine 396 3.73 0.44 532 4.26 0.57 0.52 0.72 0.47
ACT (ages +14) 400 3.41 0.23 529 3.53 0.46 0.12 0.52 0.81
ACT (ages 6-13) 403 3.02 0.20 512 3.39 0.53 0.37 0.57 0.52
ACT (ages 1-5) 407 3.08 0.24 537 3.82 0.24 0.74 0.33 0.03
ACT (ages -1) 409 3.30 0.25 560 4.44 0.26 1.14 0.36 0.00

Notes: Mining area is defined as the geographic area where the distance from a mine to its closest health facility is less than 14.5 km. The unit of observation
is health facility and all financial characteristics as well as commodity stock value are expressed in U.S. Dollars. All indicators correspond to monthly average
numbers. The first six columns show the number of observations, sample mean and robust standard errors for non-mining and mining areas respectively. The
last three columns indicate the difference in means between non-mining and mining area, the robust standard errors for the difference and the p-value of the
test of whether the mean coefficients in the mining and non-mining sample are equal.
* Variables are expressed as share in local population.
** Mean and standard deviation of local population are expressed in thousands.
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Table 2: Summary statistics and difference-in-means, 8km window around the border

Outside mining area Within mining area Difference-in-means
Obs. Sample mean s.d. Obs. Sample mean s.d. Diff-in-means s. e. p-value
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Geographic characteristics
Elevation (in metres) 161 1,319.01 44.37 232 1,217.65 34.40 -101.36 56.14 0.07
Slope 161 5.88 0.47 232 5.91 0.48 0.03 0.67 0.97
Distance from closest facility (km) 161 5.72 0.47 232 5.42 0.37 -0.30 0.60 0.61
Distance from closest hospital (km) 142 21.08 1.50 214 20.89 1.15 -0.19 1.89 0.92

Facilities characteristics*

Antimalarial stock value 145 0.08 0.01 201 0.10 0.01 0.01 0.01 0.12
Total other drugs stock value 157 0.12 0.01 226 0.12 0.01 0.01 0.01 0.55
Revenue 157 0.73 0.06 217 0.73 0.05 -0.00 0.08 0.98
Investment 116 0.05 0.01 157 0.06 0.01 0.01 0.01 0.52
Payroll tax 128 0.02 0.00 178 0.01 0.00 -0.01 0.00 0.07
Government bonus 114 0.03 0.00 158 0.05 0.01 0.01 0.01 0.04
No. nurses 155 0.00 0.00 219 0.00 0.00 0.00 0.00 0.51
No. births 146 0.02 0.00 216 0.02 0.00 0.00 0.00 0.82

Local Population** 161 12.36 0.57 232 11.44 0.50 -0.93 0.76 0.22

No. days antimalarial stock outs
Insecticide-Treated bed Nets 132 6.19 0.53 179 5.96 0.45 -0.22 0.70 0.75
Rapid Diagnostic Tests 117 2.38 0.31 159 1.80 0.30 -0.58 0.43 0.18
Sulfadoxine-Pyrimethamine 119 3.83 0.56 165 2.88 0.35 -0.94 0.66 0.16
ACT (ages +14) 115 3.57 0.38 165 4.49 1.41 0.92 1.46 0.53
ACT (ages 6-13) 116 3.19 0.35 156 4.56 1.69 1.37 1.72 0.43
ACT (ages 1-5) 127 3.36 0.42 170 3.40 0.40 0.04 0.58 0.95
ACT (ages -1) 124 3.86 0.51 175 4.12 0.48 0.26 0.70 0.71

Notes: Mining area is defined as the geographic area where the distance from a mine to its closest health facility is less than 14.5 km. The unit of observation
is health facility and all financial characteristics as well as commodity stock value are expressed in U.S. Dollars. All indicators correspond to monthly average
numbers. The first six columns show the number of observations, sample mean and robust standard errors for non-mining and mining areas respectively. The
last three columns indicate the difference in means between non-mining and mining area, the robust standard errors for the difference and the p-value of the
test of whether the mean coefficients in the mining and non-mining sample are equal.
* Variables are expressed as share in local population.
** Mean and standard deviation of local population are expressed in thousands.
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Table 3: Summary statistics and difference-in-means, 3km window around the border

Outside mining area Within mining area Difference-in-means
Obs. Sample mean s.d. Obs. Sample mean s.d. Diff-in-means s. e. p-value
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Geographic characteristics
Elevation (in metres) 68 1,302.82 71.69 81 1,278.82 61.83 -24.01 94.67 0.80
Slope 68 6.81 0.79 81 6.61 1.18 -0.20 1.42 0.89
Distance from closest facility (km) 68 6.10 0.80 81 5.60 0.60 -0.50 1.00 0.62
Distance from closest hospital (km) 58 20.98 2.35 74 22.28 1.91 1.29 3.03 0.67

Facilities characteristics*

Antimalarial stock value 59 0.08 0.01 71 0.09 0.01 0.01 0.01 0.29
Total other drugs stock value 67 0.11 0.01 78 0.14 0.02 0.04 0.02 0.12
Revenue 66 0.76 0.10 76 0.68 0.09 -0.08 0.13 0.56
Investment 51 0.06 0.01 51 0.06 0.01 0.00 0.02 0.87
Payroll tax 56 0.01 0.00 59 0.01 0.00 0.00 0.01 0.50
Government bonus 47 0.04 0.01 52 0.05 0.01 0.01 0.01 0.22
No. nurses 66 0.00 0.00 79 0.00 0.00 0.00 0.00 0.68
No. births 57 0.02 0.00 80 0.02 0.00 -0.00 0.00 0.63

Local Population** 68 12.72 0.94 81 11.47 0.91 -1.25 1.31 0.34

No. days antimalarial stock outs
Insecticide-Treated bed Nets 59 7.02 0.86 65 6.32 0.81 -0.70 1.18 0.56
Rapid Diagnostic Tests 50 2.18 0.37 59 1.46 0.33 -0.73 0.50 0.15
Sulfadoxine-Pyrimethamine 52 5.03 1.10 59 2.71 0.59 -2.31 1.24 0.07
ACT (ages +14) 51 2.90 0.44 61 3.20 0.57 0.30 0.71 0.67
ACT (ages 6-13) 50 3.11 0.54 60 7.13 4.34 4.02 4.38 0.36
ACT (ages 1-5) 55 3.66 0.81 65 3.17 0.68 -0.48 1.05 0.65
ACT (ages -1) 56 4.49 0.82 64 4.22 0.79 -0.27 1.14 0.81

Notes: Mining area is defined as the geographic area where the distance from a mine to its closest health facility is less than 14.5 km. The unit of observation
is health facility and all financial characteristics as well as commodity stock value are expressed in U.S. Dollars per capita (sing local population catchment
area of the facility). All indicators correspond to monthly average numbers. The first six columns show the number of observations, sample mean and robust
standard errors for non-mining and mining areas respectively. The last three columns indicate the difference in means between non-mining and mining area, the
robust standard errors for the difference and the p-value of the test of whether the mean coefficients in the mining and non-mining sample are equal.
* Variables are expressed as share in local population.
** Mean and standard deviation of local population are expressed in thousands.

34



Figure 2: Mapping of the full sample of health facilities and mines in the DRC

Notes: The map shows the geo-location of the mines and the health facilities in the Estern DRC along with
provincial level boundaries. The mines and health facilities are located in North and South Kivu, Ituri, Maniema,
Tshopo and Tanganyika.
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Figure 3: Mapping of health facilities and mines in North Kivu

Notes: The map shows the exact geo-location of the mines and the health facilities in North Kivu, one of the
provinces which contains the most observations in the sample.
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Figure 4: Paths from health facilities to mines with elevation feature

Notes: This map plots health facilities and mines along with the algorithm-derived shortest paths based on
elevation. The cost path function was used in ArcGIS 10 to estimate the least cost path from each health facility
to the closest mine.
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Figure 5: Administrative map of the DRC and the selected provinces

Notes: The map shows the provincial boundaries of the DRC and the selection of provinces that contains the
location of health facilities and mines from the data sample: North and South Kivu, Ituri, Maniema, Tshopo
and Tanganyika.
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Figure 6: Malaria prevalence as a function of the distance to mines

Notes: Each point plots an average value within a bin that represents a 1 km interval. The y-axis indicates the
malaria probability which is defined as the total number of malaria cases divided by the total population in the
catchment area of each health facility.

Table 4: Manipulation Density tests

Density tests (1) (2) (3) (4) (5)
hmining hnon−mining Nmining Nnon−mining p-value

Separate MSE Optimal bandwidth 3,647 5,348 84 105 0.84
Restricted C.D.F 6,723 6,723 175 129 0.89

Notes: The table shows the results of the manipulation test based on the local polynomial density estimation
technique (Cattaneo et al., 2017) where the density functions of the mining and non-mining areas are equal under
the null hypothesis. The first two columns correspond to the choice of the bandwidth (in metres) on each side of
the threshold, columns (3) and (4) indicate the number of observations used and the last column gives the p-value
of the test. I perform the test using two different MSE optimal bandwidth on each side of the cutoff for which
the results are reported in the first row. The second row corresponds to the density test where the Cumulative
Distribution Functions (C.D.F.) of the running variable on each side of the cutoff are assumed to be equal.
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Table 5: Parametric estimation of the effect of mining areas

Linear model (p=1) Cubic model (p=3)

Window selection 3 km 8 km

Control variables* No Yes No Yes
(1) (2) (3) (4)

Aid for malaria per capita
RD Mining effect 0.058 0.058 0.072 0.070
s.e. 0.024 0.022 0.027 0.026
Standard p-value 0.017 0.011 0.008 0.007
Obs. 130 130 346 346

Placebo outcomes, standard p-values
Expenditures 0.414 0.614
Revenue 0.693 0.767
No. of health workers 0.768 0.633
No. of births 0.826 0.716

Notes: The table reports the results of the weighted least squares estimations based on specification (1).
In the upper part of the table, the dependent variable is the antimalarial stock value and the bottom part
of the table reports the standard p-value of the β1 estimates for a list of pre-determined covariates. Each of
these covariates is used as the dependent variable in order to test the validity of the RD design, and I report
robust standard errors. Columns (1) to (4) report the results obtained using a local linear regression and
columns (5) to (8) present results using a local cubic model that provides more flexibility as the g(.) function
covers a larger support (7 to 10 km).
* Control variables are the geographic characteristics (elevation and slope) and the number of mines sur-
rounding a health facility.
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Table 6: Non-parametric estimation of the effect of mining areas

Linear model (p=1) Cubic model (p=3)

Control variables* No Yes No Yes
(1) (2) (3) (4)

Bandwidth h (in metres)** 3,997 3,945 8,093 7,755

Aid for malaria per capita
RD Mining effect 0.053 0.054 0.072 0.073
Robust s.e. 0.024 0.022 0.029 0.026
Robust p-value 0.011 0.006 0.009 0.004
Obs. 170 165 348 339

Placebo outcomes, robust p-values
Expenditures 0.539 0.608
Revenue 0.857 0.937
No. of health workers 0.472 0.466
No. of births 0.845 0.795

Notes: The table reports the results from nonparametric estimations of specification (1) using a local
linear and cubic model. In the upper part of the table, the dependent variable is the antimalarial stock
value whilst the bottom part of the table presents the robust p-values of the estimates of the mining
effects on several pre-determined covariates following the procedure described by Calonico, Cattaneo, and
Titiunik (2014).
* Control variables are elevation and slope.
** The bandwidth selection follows the MSE-optimal procedure proposed by Calonico, Cattaneo, and
Titiunik (2014), as well as the construction of robust standard errors p-values. The smoothed distribution
function used is the triangular kernel.
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Table 7: Parametric estimation of the effect of mining areas by antimalarial commodity

Linear model (p=1) Cubic model (p=3)
(1) (2)

Window selection (km) 3 8

ACT - Treatment
RD Mining effect 0.016 0.019
s.e. 0.009 0.010
p-value 0.068 0.049
Obs. 147 388

Sulfadoxine-Pyrimethamine (SP) - Prevention
RD Mining effect 0.039 0.046
s.e. 0.011 0.013
p-value 0.001 0.001
Obs. 134 357

Rapid Diagnostic Test (RDT)
RD Mining effect 0.006 0.005
s.e. 0.002 0.003
p-value 0.022 0.077
Obs. 145 380

Insecticide-Treated bed Net (ITN)
RD Mining effect 0.002 0.003
s.e. 0.006 0.009
p-value 0.771 0.700
Obs. 134 347

Notes: The table reports the results of the weighted least squares estimations based on specification (1) for each anti-
malarial commodity, with robust standard errors. Each commodity’s stock value is expressed as a share in the population
catchment area of the facility. For each regression, I control for the government bonus and geographic characteristics
(distance to the closest health facility, elevation and slope) and the number of mines surrounding a health facility.
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Table 8: Non-parametric estimation of the effect of mining areas by antimalarial com-
modity

Linear model (p=1) Cubic model (p=3)
(1) (2)

ACT - Treatment
RD Mining effect 0.013 0.014
s.e. 0.008 0.010
Robust p-value 0.061 0.180
Bandwidth (metres) 4,178 6,516
Obs. 201 329

Sulfadoxine-pyrimethamine (SP) - Prevention
RD Mining effect 0.036 0.046
s.e. 0.012 0.014
Robust p-value 0.001 0.001
Bandwidth (metres) 3,131 7,680
Obs. 136 345

Rapid Diagnostic Test (RDT)
RD Mining effect 0.005 0.008
s.e. 0.003 0.003
Robust p-value 0.049 0.002
Bandwidth (metres) 4,928 8,063
Obs. 224 268

Insecticide-Treated bed Net (ITN)
RD Mining effect 0.006 -0.002
s.e. 0.008 0.011
Robust p-value 0.332 0.742
Bandwidth (metres) 4,324 5,656
Obs. 186 252

Notes: The table reports the results from nonparametric estimations of specification (1) using a local linear and
cubic model for each antimalarial commodity. The bandwidth selection follows the MSE-optimal procedure proposed by
Calonico, Cattaneo, and Titiunik (2014), as well as the construction of robust standard errors p-values. The smoothed
distribution function used is the triangular kernel. Each commodity’s stock value is expressed as a share in the population
catchment area of the facility. For each regression, I control for the geographic characteristics (elevation and slope) and
the number of mines surrounding a health facility.

43



Table 9: Effect of mining areas on stock-outs, consumption and stock

ACT ACT ACT ACT
SP < 1 1-5 6-13 < 14 ITN RDT
(1) (2) (3) (4) (5) (6) (7)

No. of stock-out days per month
RD Mining effect -0.461 -1.144 -1.038 7.869 0.495 1.992 -0.775
s.e. 1.656 1.895 1.686 9.326 1.121 1.731 0.792
Robust p-value 0.977 0.545 0.498 0.317 0.746 0.143 0.290
Obs. 134 221 226 182 122 202 145

Monthly consumption
RD Mining effect 0.006 0.019 0.038 0.005 0.021 0.006 0.059
s.e. 0.003 0.012 0.016 0.005 0.011 0.004 0.040
Robust p-value 0.026 0.071 0.013 0.385 0.032 0.106 0.122
Obs. 180 202 187 168 221 273 214

Monthly stock
RD Mining effect 0.101 0.007 0.007 0.003 0.006 0.021 0.169
s.e. 0.036 0.005 0.005 0.003 0.005 0.037 0.108
Robust p-value 0.002 0.142 0.124 0.189 0.144 0.520 0.090
Obs. 130 180 163 202 264 220 294

Monthly share of consumption per stock
RD Mining effect -0.165 -1.083 -0.418 -1.396 -0.359 -0.171 -0.839
s.e. 0.088 1.022 1.522 1.120 1.005 0.170 0.448
Robust p-value 0.029 0.208 0.667 0.154 0.741 0.205 0.029
Obs. 164 183 171 178 175 161 193

Notes: The table reports the results from nonparametric estimations of specification (1) using local linear regressions for each
outcome. The bandwidth selection follows the MSE-optimal procedure proposed by Calonico, Cattaneo, and Titiunik (2014), as
well as the construction of robust standard errors p-values. The smoothed distribution function used is the triangular kernel.
ACT drugs are decomposed by age category in columns (2) to (5) and correspond to below 1 year old, between 1 and 5, between
6 and 13 and above 14 years old respectively. Each commodity’s stock value is expressed as a share in the population catchment
area of the facility. For each regression, I control for the geographic characteristics (elevation and slope) and the number of mines
surrounding a health facility.
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Table 10: Effect of mining areas on ANC and malaria prevalence

Linear model (p=1) Cubic model (p=3)
(1) (2)

No. of prenatal visits per capita
RD Mining effect 0.002 0.005
Robust s.e. 0.004 0.006
Robust p-value 0.456 0.353

Bandwidth h (in metres)* 4,943 8,049
Obs. 224 378

Malaria prevalence
RD Mining effect 0.065 0.079
Robust s.e. 0.028 0.038
Robust p-value 0.011 0.038

Bandwidth h (in metres)* 4,212 7,273
Obs. 202 352

Notes: The table reports the results from nonparametric estimations of specification (1) using
local linear regressions for each outcome. The bandwidth selection follows the MSE-optimal pro-
cedure proposed by Calonico, Cattaneo, and Titiunik (2014), as well as the construction of robust
standard errors p-values. The smoothed distribution function used is the triangular kernel. For
each regression, I control for the geographic characteristics (elevation and slope) and the number of
mines surrounding a health facility.
* The bandwidth selection follows the MSE-optimal procedure proposed by Calonico, Cattaneo,
and Titiunik (2014), as well as the construction of robust standard errors p-values. The smoothed
distribution function used is the triangular kernel.
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Figure 7: Local polynomial estimations of malaria prevalence as a function of the
distance to mines

Notes: This figure shows the non-parametric estimations of malaria prevalence conditional on the distance from
a health facility to its the closest mine, using a kernel-weighted local polynomial regression of order 1. The kernel
function is epanechnikov and the the bandwidth corresponds to 700 metres. The y-axis represents the malaria
prevalence defined as the share of malaria cases in the population catchment area of the health facility and the
x-axis corresponds to the distance from health facility to the closest mine in metres. The shaded area denotes
the 95% confidence interval of the coefficients.
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Figure 8: Density of the running variable

Notes: The above figure shows the distribution of the running variable for health facilities in the sample. The
running variable is the distance from the health facility to the mining threshold, which is located 14.5 km from
a mine. The running variable is centred around the threshold, so distances are negative in the mining areas
(left side of the threshold) and positive in non-mining areas (right side of the threshold). The y-axis shows the
percentage of observations within each bin, where the latter represents a 250 metre-interval.
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Figure 9: Cumulative Distribution Function

Notes: The above figure shows the cumulative distribution function of health facilities conditional on the distance
to the nearest health facility. The data sample is restricted on health facilities located within 10 km (red line)
and 4 km (blue dashed line) from the threshold. Distances are reported in metres on the x-axis. The sample is
also restricted to health facilities whose maximum distance to another closest facility is 30 kilometres.
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Figure 10: RD effect on the stock value of ACT and SP commodities

(a) Stock value of ACT

(b) Stock value of SP

Notes: Each point plots an average value within a bin conditional on the distance to the mining threshold. The
distance is in metres and the solid line plots a local cubic regression.
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Figure 11: Evidence on continuity condition

(a) Expenditure (b) Revenue

(c) Number of births (d) Number of health workers

(e) Government bonus (f) Stock value of total other drugs

Notes: Each point plots an average value within a bin conditional on the distance to the mining threshold. The
distance is in metres and the solid line plots a local cubic regression.
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Figure 12: Robustness Checks

Notes: The figures plot estimates from separate RD regressions of the outcome on mining area. The regressions
include pre-determined covariates for geographic characteristics and use robust standard-errors. Each graph shows
the point estimates and 95% confidence intervals. The bandwidth selection follows the data-driven procedures
suggested by Calonico, Cattaneo, and Titiunik (2014) for figures (B) and (C) and is referred to ”CCT” in figure
(A). The vertical red line in figure (C) plots the 14.5 km cutoff that is used in all baseline results.
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Figure 13: Local polynomial estimations of aid for malaria as a function of the
distance to mines within mining areas

Notes: This figure shows the non-parametric estimations of aid for malaria conditional on the distance from a
health facility to its the closest mine within mining areas, using a kernel-weighted local polynomial regression
of order 1. The kernel function is epanechnikov and the the bandwidth corresponds to 700 metres. The y-axis
represents the malaria prevalence defined as the share of malaria cases in the population catchment area of the
health facility and the x-axis corresponds to the distance from health facility to the closest mine in metres. The
shaded area denotes the 95% confidence interval of the coefficients.
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Figure 14: Prices of antimalarial commodoties

Notes: The above document presents the reference pricing of antimalarial medicines negotiated by the Global
Fund through the Pooled Procurement mechanism (reference prices for Rapid Diagnostic Tests (RDT) and
Insecticide-Treated bed Nets (ITNs) were also extracted from the Global Fund’s documents (The Global Fund,
2018) . The Global Fund’s objectives are to stabilise prices and ensure market sustainability of health commodities
by pooling demand of countries that participate to the programme (The Global Fund, 2018).
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Figure 15: Evolution of aid needed with the additional risk of malaria transmission

Notes: The figure plots the evolution of malaria-related costs that are required to cope with the additional risk
of malaria transmission. The horizontal red dashed line shows the additional aid for malaria that is received in
high burden areas according to the nonparametric RD estimation (table 6) of the mining effect. The total cost
of malaria diagnosis, prevention and treatment is calculated from the price list of antimalarial commodities of
the Global Fund (figure 14).
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Data Appendix

I detail in this section the variables that are used in the analysis.

Geographic Characteristics

Elevation: Elevation measured in metres above the sea level. Data on elevation and terrain

features were obtained from NASA’s Shuttle Radar Topography Mission (SRTM) satellite im-

ages. Elevation information is provided at a high spatial resolution (3 arc-second resolution or

approximately 90 metres). Information is then processed in ArcGIS to obtain elevation data.

Slope: Slope is measured in degrees and is obtained from NASA’s Shuttle Radar Topography

Mission (SRTM) satellite images and processed in ArcGIS.

Distance from closest facility : corresponds to the geographic distance from a health facility

to the closest facility. Distances are calculated with ArcGIS based on the latitude and longitude

of each health facility in the data sample.

Distance from closest hospital : corresponds to the geographic distance from a health facility

to the closest hospital. Distances are calculated with ArcGIS based on the elevation and surface

features, and using the latitude and longitude of each health facility in the data sample. The

function costpath is used in ArcGIS to calculate the optimal path based on the geographic

features; distance information on the estimated path is then extracted for each health facility.

Facilities Characteristics

Antimalarial stock value: Antimalarial commodity corresponds to any commodity that is

used as mean of prevention, identification or treatment of malaria. It comprises Insecticide-

Treated mosquito Nets (ITNs) and Sulfadoxine-Pyrimethamine (SP), (chemoprevention admin-

istered to pregnant women and children less than five) for prevention ; 2) Rapid Diagnostic

Test (RDT) for identification and Artemisinin-based Combination Therapy (ACT) for treat-

ment of malaria. Data on the monthly stock of each antimalarial commodity is obtained from

the DHIS2. The estimated value is U.S. Dollars and is based on the reference pricing of anti-

malarial medicines negotiated by the Global Fund through the Pooled Procurement mechanism

for 2017.

Total other drugs stock value: corresponds to the medicines listed as Essential

Medicines from the WHO Model list (https://www.who.int/medicines/publications/

essentialmedicines/en/). Data on the monthly stock of these medicines are obtained from

the DHIS2, and the stock value is expressed in U.S. Dollars.

Revenue: is the monthly revenue reported by health facilities in the DHIS2, and expressed

in U.S. Dollars.

Investment : is the monthly investment reported by health facilities in the DHIS2, and

expressed in U.S. Dollars.
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Payroll tax : is the monthly payroll tax reported by health facilities in the DHIS2, and

expressed in U.S. Dollars.

Number of nurses: is the monthly number of nurses who are working in the health facility

as reported in the DHIS2. The number includes nurses with two different qualification levels,

A1 and A2.

Number of births: is the monthly number of birth in the health facility as reported in the

DHIS2.

Stock outs days antimalarial

Insecticide-Treated mosquito Net : corresponds to the average monthly number of days the

health facility ran out of ITNs in 2017.

Rapid Diagnostic Test : corresponds to the average monthly number of days the health

facility ran out of RDTs in 2017.

Sulfadoxine-Pyrimethamine: corresponds to the average monthly number of days the health

facility ran out of SPs in 2017.

ACT (ages +14): corresponds to the average monthly number of days the health facility

ran out of Artemisinin-based Combination Therapy (ACT) for patients above 14 in 2017.

ACT (ages 6-13): corresponds to the average monthly number of days the health facility

ran out of Artemisinin-based Combination Therapy (ACT) for patients between 6 and 13 in

2017.

ACT (ages 1-5): corresponds to the average monthly number of days the health facility ran

out of Artemisinin-based Combination Therapy (ACT) for patients between 1 and 5 in 2017.

ACT (ages -1): corresponds to the average monthly number of days the health facility ran

out of Artemisinin-based Combination Therapy (ACT) for patients below 1 in 2017.

Evidence of Data quality in the DHIS2

DHIS2 is notoriously known to exhibit varying data quality performance across African

countries where it is implemented. Even within the DRC, there is considerable heterogeneity

in the completeness of reported data depending on the type of indicators. In particular, indi-

cators (number of patients, stock and consumption of commodities, number of stock-out days,

estimated number of affected population) pertaining to diseases heavily funded by donors (HIV,

malaria) exhibits a significant higher quality performance than those related to disease mostly

funded by government funding (such as non-communicable diseases). Moreover, two provinces

which contain most of health facilities analysed in this study (North and South Kivu) have

the highest state of data completeness across provinces in the country. To ensure the valid-

ity of the data, I also cross validated the epidemiological and financial data with two external

sources. For data on malaria prevalence, I compare the obtained numbers from DHIS2 with

the most recent Demographic Health Surveys in the DRC that was conducted in 2013/2014
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and I do not find significant variations. Furthermore, I estimated the stock value of antimalar-

ial commodities from the reported stock at health facility level and the cost of procurement

of each commodity (obtained from the Pooled Procurement Mechanism Reference Pricing of

the Global Fund, see figure 14). I then calculated for each province of the DRC the sum of

the estimated stock value of antimalarial commodities of each health facilities. Furthermore,

information on total malaria’s funding at the provincial level was obtained from the three most

important donors for malaria in the DRC (namely the Global Fund, U.S. Government (USAID)

and U.K. Government (DFID)), representing approximately 97% of total donors’ funding for

malaria in the country (MSP, 2017). Figure 1 graphs the scatter plot of the estimated stock

value of antimalarial commodities at the provincial level on the donors’ malaria funding. The

estimated coefficient indicates that the stock value of antimalarial commodities represents 48%

of total malaria investment (see figure 16). This information is consistent with the findings from

a recent audit report of the Global Fund in the DRC (The Global Fund, 2016) which estimates

that 53% of total the Global Fund’s investment is dedicated to the procurement of antimalarial

commodities46.

46This estimate was obtained from the financial information of the Global Fund’s local partners and the
estimated annual budget of the malaria control programme.

57



Figure 16: Stock value of antimalarial commodities and total malaria investment

Notes: Scatter plot of stock value of antimalarial commodities in 2017 for each of the 23 provinces of the
Democratic Republic of Congo with fitted line versus total malaria investments in each province.
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