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While many studies have found associations between climate change and factors 

affecting Chagas disease transmission, the future impact of climate change on the global 

spread of Chagas disease remains debatable.  A qualitative, systematic review was conducted 

to assess the impact of climate change on Chagas disease transmission in the Americas 

(Central America, South America, and North America). The literature search was performed 

in January 2019 using the keywords climate, Chagas, and “trypanosoma cruzi” and the 

electronic databases PubMed, Scopus, and Ovid. Searches retrieved records from 1982 

through 2019. The initial electronic database search identified a total of 191 record 

documents and 23 additional records through other sources. After assessment for inclusion 

eligibility, seven articles fulfilled the selection criteria and were included in the review. Most 

studies under review showed that Chagas disease transmission is highly sensitive to climate 

factors, specifically temperature, relative humidity, and precipitation. The majority of 

reviewed studies conducted in Latin American predict stable or decreased vector 

distributions and T. cruzi transmission rates as future consequences of climate change in their 

study areas. Notably, Mexico was the only geographical area studied in the Americas where 



 
  
 
 
 
 

Chagas disease is currently endemic and also predicted to be at increased transmission risk 

under future climate change scenarios. Similarly, an expansion of areas in the United States 

at increased risk for Chagas disease transmission is also expected over the next several 

decades under climate change scenarios. Of particular interest is the predicted northern shift 

of triatomine species to central regions of the United States with historically unsuitable 

climates for T. cruzi vectors. The weight of evidence regarding the influences climate change 

may pose on T. cruzi vector species distributions demonstrates the sensitivity of Chagas 

disease transmission to future climate variability. In order to advance forecasts for the impact 

climate change may have on Chagas disease transmission in the Americas, it is imperative to 

further develop, utilize, and perhaps combine predictive species distribution modeling 

approaches that integrate accurate, long term data on climate variables, vector species 

distributions, Chagas disease incidence, as well as other socio-ecological variables. 
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BACKGROUND 

Epidemiology of Chagas Disease 

Chagas disease, or American trypanosomiasis, is an emerging major public health 

concern for the growing world population and is currently a leading cause of chronic 

morbidity and mortality throughout Latin America (Bonney, 2014).  Endemic to 21 Latin 

American countries (Schmunis, 2007), Chagas disease has been increasingly detected in non-

endemic regions, such as the southern United States, over the last several decades. Recent 

data from the World Health Organization (WHO) estimates that over 25 million people are at 

risk of contracting Chagas disease worldwide, with approximately eight million people 

currently infected with Trypansosoma cruzi (T. cruzi), the intracellular protozoan parasite 

that causes Chagas disease (WHO, 2018).  As one of the most prevalent, albeit neglected, 

infectious diseases of the Americas (Tapia-Garay et al., 2017), T. cruzi is “responsible for the 

third highest number of parasitic infections in the world, following malaria and 

schistosomiasis” (Diaz, 2008, p. 184), with 180,000 new T. cruzi infections occurring 

annually. Overall, Chagas disease is the deadliest parasitic disorder in Latin America, leading 

to more than 7,000 deaths per year (Alonso-Padilla et al., 2019).  

Transmission of Chagas Disease 

First described by Dr. Carlos Chagas in 1909 (Diaz, 2008), Chagas disease is a 

zoonosis caused by infection with the parasitic trypanosome, T. cruzi (Garza et al., 2014). 

Many mammals (e.g. dogs, cats, and rodents) are susceptible to T. cruzi infection, serving as 

reservoir hosts to the parasite once infected. T. cruzi parasites are transmitted between 

animals and to humans by blood-feeding triatomine bugs (also called reduviid bugs or 
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“kissing bugs”) (Kumar, Abbas, Fausto, Robbins, & Cotran, 2005). After biting and 

subsequently feeding on the blood of mammalian hosts, infected triatomine bugs act as 

disease vectors, passing the T. cruzi parasites in their feces. Interestingly, T. cruzi is not 

directly introduced to hosts through triatomine bites, but rather hosts become infected when 

T. cruzi laden excreta comes into contact with damaged skin (e.g. scratching at bite sites) or 

mucosal surfaces (most frequently the eyes) (Klotz, Dorn, Mosbacher, & Schmidt, 2014). 

Infections can also occur through vertical transmission (from mother to fetus), blood 

transfusion, organ transplantation, by consumption of contaminated food or drinks, or 

laboratory accidents (Cordovez, Rendon, Gonzalez, & Guhl, 2014).  Once T. cruzi is 

introduced into the bloodstream of a mammalian host, a variety of cell types within the body 

become vulnerable to infection (Bonney, 2014).   

Clinical Manifestations of Chagas Disease 

Chagas disease consists of two distinct clinical phases: the acute phase and the 

chronic phase. The acute phase occurs in the initial 8 weeks of infection, is usually 

asymptomatic, and thus, often goes undiagnosed. If symptoms do present during this phase, 

they are generally mild and are not unique to Chagas disease, including malaise, fatigue, 

body aches, headache, rash, loss of appetite, fever, vomiting and/or diarrhea (CDC, 2017).  

Physical examination may reveal swollen lymph nodes, mild enlargement of the liver or 

spleen, and/or a chagoma (localized swelling at the infection site). Present in ~ 1% of cases, 

Romana’s sign is a rare, yet most recognizable marker of acute Chagas disease; characterized 

by unilateral swelling of the eyelids near the bite wound or site where infected feces was 

deposited into the eye. Parasitemia, the presence of parasites in the blood, is often high 
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during this phase, making diagnosis possible via microscopic blood examination (Bonney, 

2014).  Symptoms experienced during the acute phase usually abate after weeks to months, 

even without treatment. However, if left untreated, the infection will persist into the chronic 

phase (CDC, 2017) following a period of 5-40 years. The chronic phase includes two forms: 

an asymptomatic form (“indeterminant” or “latent”) and a symptomatic form. Although the 

majority of people in the chronic phase will remain asymptomatic, approximately 20-30% of 

individuals will go on to develop serious, potentially life threatening, cardiac and/or intestinal 

complications (e.g., cardiomyopathy, heart failure, cardiac arrest, megaesophagus, and 

megacolon) (Garza et al., 2014).  

The Ecology of Chagas Disease and Vectors 

The epidemiological triangle of Chagas disease includes host, pathogen, and 

triatomine vectors as they interact together within the environment. Distributed widely 

throughout the Americas, from the southern United States to Argentina, T. cruzi triatomine 

vectors “have a wide range of climatic and ecological tolerability because they inhabit 

diverse ecosystems” (p. 1). Due to their high vagility and ability to survive at varying 

altitudes, triatomines are suited for sundry habitats and capable of exploiting diverse food 

sources.  Thus, distribution of these vectors is strongly influenced by environmental factors, 

with variances in temperature, humidity, and precipitation having the ability to significantly 

alter the risk of vector transmitted T. cruzi infections (Parra-Henao, Suarez-Escudero, & 

Gonzalez-Caro, 2016). 
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Chagas Disease and Climate Change 

The broad impacts of climate on health are well established and substantiated 

throughout the literature, with many assessments forecasting an increased future incidence of 

infectious diseases due to climate change factors (Medone, Ceccarelli, Parham, Figuera, & 

Rabinovich, 2015). Projected impacts of global climate change on temperature and rainfall 

conditions have the potential to influence the geographic distribution of disease vectors, 

conceivably altering the vulnerability of human populations to vector-borne diseases, 

including Chagas disease (Garza et al., 2014).  There is evidence indicating that climate 

change has facilitated a northern shift of T. cruzi triatomine vectors, and thus Chagas disease 

risk, from endemic countries of Latin America to non-endemic areas of North America, 

including the southern United States. By allowing more habitats to become suitable for 

vectors and reservoir host species of Chagas disease, climate change threatens to transform 

the disease from a Latin American problem to a global one (Carmona-Castro, Moo-Llanes, & 

Ramsey, 2018). 

Vector Distribution Modeling of T. cruzi vectors and Climate Change 

Triatomine vectors are the main route of T. cruzi infection in humans. Thus, one of 

the most important concerns regarding future Chagas disease transmission risk to human 

populations is the degree to which triatomine vector species may alter their geographic 

distributions over time. Climate change is one factor that may play a significant role in 

altering the geographic distributions of triatomine vector species, and hence, it is necessary to 

employ tools that enable prediction of future triatomine geographic distributions in response 

to climate change. Ecologic niche modeling (ENM) is one of those valuable tools, “available 
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for the exploration of geographical and ecological phenomena based on known species 

occurrences,” which enables the identification of future trends of human “potential 

vulnerability” to Chagas disease in relation to projected geographic range alterations of 

triatomine species in response to changes in climate factors (Ceccarelli & Rabinovich, 2015, 

p. 1334). 

Public Health Significance 

As global climate change is predicted to accelerate over the coming decades, an 

increased frequency, intensity and duration of extreme climatic events are expected to occur 

and anticipated to affect Chagas disease transmission.  This is a global public health priority.  

A better understanding of the relationship between climate and Chagas disease is an 

important step towards finding ways to mitigate the future impact of this disease on 

communities. Successful management of Chagas disease requires an understanding of the 

expected dynamics of the parasite, host, vectors, and environmental factors in the context of 

a changing climate. 

Research Question and Objectives 

While many studies have found associations between climate change and factors affecting 

Chagas transmission, the future impact of climate change on the global spread of Chagas 

disease remains debatable: 

Research question:  

What are the projected impacts of climate change on the transmission and spread of Chagas 

disease in the Americas? 
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Objectives:  

1. Assess the influence of climate on the future distributions of T. cruzi vectors and, by 

extension, transmission and spread of Chagas disease in the Americas. 

2. Identify the most important gaps in our current knowledge of the relationship between 

climate change and transmission/spread of Chagas disease in the Americas. 

3. Suggest approaches for identifying, managing, and controlling the potential effects of 

climate change on the occurrence of Chagas disease worldwide. 

METHODS 

Study Design 

A qualitative, systematic review was conducted to assess the impact of climate 

change on Chagas disease transmission in the Americas (Central America, South America 

(e.g. Brazil, Argentina, Venezuela, and Chile) and North America (e.g. Mexico and the 

United States)). 

Search Strategy and Key Words 

A literature search was conducted in 2019 using the electronic databases PubMed, 

Scopus, and Ovid to obtain information on the impact of climate change on Chagas disease 

transmission. The following keywords were utilized in the database searches: climate, 

Chagas, and “trypanosoma cruzi”.  Searches retrieved records from 1982 through 2019. 

References and citations of the articles identified were analyzed to ensure the inclusion of all 

relevant literature. 
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Selection Criteria 

Several selection criteria were utilized to select articles from the database search results for 

detailed consideration in the review. The inclusion criteria included: 

1. Peer-reviewed journal articles 

2. English language articles 

3. Full text/pdf articles 

4. Ecologic study design 

5. Articles that include geographical areas located within Central America, South  

    America and/or North America   

6. Articles that include T. cruzi vector species occurrence data   

7. Articles with climate data, including at least one climate based projection of future         

    Chagas disease transmission 

No exclusion criteria were utilized in conducting the systematic literature review. 

Coding and Evidence Table 

Eligible studies were coded to gather data on the following fields: 

 1. Geographical study area (projection periods) 

 2. Vector species data 

 3. Chagas disease data 

 4. Covariate data 

 5. Climate change models/scenarios 

 6. Vector species distribution models 

 7. Model evaluation 
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 8. Key Findings 

 9. Comments 

          10. Future considerations 

          11. Limitations 

          12. Quality assessment score 

Quality Assessment 

There is currently no validated tool for assessing the methodological quality of 

ecologic studies.  Thus, we employed an adapted version of the checklist proposed by Betran 

et al. (2015) to evaluate aspects related to study design, statistical methodology and reporting 

quality of ecologic studies. The quality of each study was assessed based on 15 items with a 

maximum score of 21 points; 12 points for study design, 6 for statistical methodology and 3 

for quality of reporting. 
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Table 1 Quality assessment criteria for ecologic studies 
 

Study design (max = 12) 
Design Multiple-group vs. Time-trend vs. Mixed 
Sample size Number of ecologic units included in the analysis as 

proportion of the total number of units, e.g. 100 countries of 
a total of 180 worldwide would be 55%. 

Unbiased inclusion of units Were the units included representative of the group for 
which inferences are being drawn? 

Level of data aggregation Population to which the units refer to. 
Level of inference Use of the results of the analysis of the study’s sample data 

to draw inferences for individuals or groups (ecologic). 
Pre-specification of ecologic units Were the ecologic units selected to suit the hypothesis? (as 

opposed to selection motivated by convenience or necessity) 
Outcomes of interest included Inclusion of all relevant outcomes or only of some 

outcomes. 
Source of data Validity of the sources of data to represent the level that it 

refers to. 
Statistical methodology (max = 6) 

Analytic methodology All statistical methods are acceptable as long as they are 
used appropriately. Score is assigned based on the 
sophistication and flexibility of the method. 

Validity of regression Did the adjustments have at least 10 units per covariate? 
Use of covariates Did authors adjust analysis for desirable variables?  
Proper adjustment for covariates Are the outcomes standardized or adjusted for certain factors 

before model adjustment? For standardized or adjusted 
outcomes, the standardized or adjusted factors should be 
included in the adjustment model. If standardized/adjusted 
outcomes are not used, this criterion is considered to have 
been met. 

Quality of reporting (max = 3) 
Statement of study design Did the authors present key elements of study design in this 

paper? 
Justification of study design Did the authors justify the ecologic analysis, the rationale 

and the specific objectives, including any pre-specified 
hypothesis? 

Discussion of cross-level bias and limitations Did the authors caution readers about the limitations of the 
ecologic design, the ecologic fallacy, the impossibility of 
extrapolating to a different level? 
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RESULTS 

The initial electronic database search identified a total of 191 record documents and 

23 additional records through other sources. After the exclusion of duplicates, 135 unique 

records were screened.  20 full-text articles were assessed for inclusion eligibility, of which 

seven fulfilled the selection criteria and were included in the review (Carmona-Castro, et al., 

2018; Ceccarelli & Rabinovich, 2015; Costa, Dornak, Almeida, & Peterson, 2014; Garza et 

al., 2014; Lambert, Kolivras, Resler, Brewster, & Paulson, 2008; Medone et al., 2015; Tapia-

Garay et al., 2018).   
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Figure 1 PRISMA flow diagram of study selection 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Records identified through 
electronic database search 

(n = 191) 

Additional records identified 
through other sources 

(n = 23) 

Records after duplicates removed 
(n =135) 

Records screened 
(n = 127) 

Records excluded 
(n = 107) 

Full-text articles assessed 
for eligibility 

(n = 20) 

Full-text articles excluded 
for not meeting inclusion 

criteria 
(n = 13) 

Studies included in 
qualitative synthesis 

(n = 7) 
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Table 2 summarizes the main characteristics of the seven studies that addressed 

climate change and the risk of Chagas disease transmission in the Americas under future 

climate change scenarios. 
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Table 2 Studies included in the review of climate impact on Chagas disease 
 

References Study area  
(projection 
periods) 

Vector species 
data  
(source) 

Chagas 
disease data 

Covariate data Climate 
change models/ 
scenarios 

Vector 
Species 
Distribution 
Model 

Model 
Evaluation 

Key Findings Comments Future 
Considerations 

Limitations Quality 
assessment 
score 
(max=21) 

Carmona-
Castro et al.  
2018 

North 
America 
(2050, 
2070) 

20 species 
modelled; 
Eratyrus (1), 
Paratriatoma (1), 
Triatoma (18) 
 
(Atlas of Mexican 
Triatominae 
compiled by 
Ramsey et al.) 
 

Chagas 
specific 
entomological 
parameters 
(distribution of 
T. cruzi vector 
species) 

U.S. Geological 
Survey’s 
HYDRO1k  
4 Topographical 
variables: 
elevation, 
aspect, 
topographical 
index and slope 
 
WorldClim  
9 bioclimatic 
variables: 
annual mean 
temperature, 
temperature 
seasonality, 
max. 
temperature of 
warmest month, 
min. 
temperature of 
coldest month, 
temperature 
annual range, 
annual 
precipitation, 
precipitation of 
wettest month, 
precipitation of 
driest month, 
precipitation 
seasonality 
  
CONAPO 
Population 
growth  

ECHAM6/IPCC 
RCP 4.5, 8.5 

GARP, 
Maxent 
(ENMs) 

pAUC Significant 
alterations in 
risk of vector-
borne T. cruzi 
transmission to 
North 
American 
populations are 
projected for 
both future 
time periods; 
specifically, in 
Mexico an 
exposure threat 
increase of 
1.48% and 
1.76% for 
urban and rural 
populations 
(respectively) 
is expected by 
the year 2050. 
 
Mean elevation 
was found to be 
the only 
important 
contributing 
variable to 
alterations in 
ENM range 
areas 
 
Size of current 
distribution 
range was 
found to be the 
best predictor 
of future 
distribution 
shifts. 
 
GARP models 
proved more 
accurate than 
MaxEnt 
models. 

Impacts of 
climate change 
are expected to 
be specific to T. 
cruzi vector 
species and their 
geographical 
locations 
 
 

Effective vector 
surveillance that 
incorporates 
trans-border 
perspectives is 
needed in North 
America to aid in 
future Chagas 
disease 
prevention and 
control.  
 
The current and 
future ENMs can 
be used in 
consideration 
with other factors 
to project the T. 
cruzi 
transmission 
threat, as both 
vector 
distribution shifts 
and human 
practices are 
expected to 
exacerbate vector 
presence and 
abundance in 
modified habitats. 

No limitations 
noted within the 
study. 

15 
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References Study area  
(projection 
periods) 

Vector species 
data  
(source) 

Chagas 
disease data 

Covariate data Climate 
change 
models/ 
scenarios 

Vector 
Species 
Distribution 
Model 

Model 
Evaluation 

Key Findings Comments Future 
Considerations 

Limitations Quality 
assessment 
score 
(max=21) 

Ceccarelli 
and 
Rabinovich 
2015 

Venezuela 
(2020, 
2060, 2080) 

5 species 
modelled; 
Panstrongylus 
geniculatus, 
Rhodnius 
prolixus, Eratyrus 
mucronatus, 
Rhodnius 
robustus, 
Triatoma 
maculata 
 
(Carcavallo et al. 
Triatomine atlas) 
 

Population 
Vulnerability 
Index 

WorldClim 
(current)/CCAF-
Climate (future) 
19 bioclimatic 
variables: incl. 
temperature 
seasonality, 
isothermality, 
temperature 
annual range, 
min. temperature 
of coldest month, 
precipitation of 
wettest quarter, 
max. temperature 
of warmest 
month, annual 
precipitation 
 
Vector 
competence 
 
Population 
growth 
 

CSIRO Mark 
3.0/IPCC 
A1B, B1 

Maxent 
(ENM) 

AUC Global climate 
change is 
predicted to 
slightly 
decrease the 
overall future 
vulnerability of 
the Venezuelan 
population to T. 
cruzi vector 
species. 
 
Only 3 
bioclimatic 
variables 
made 
significant 
contributions to 
vector 
suitability 
model 
projections 
(temperature 
seasonality, 
isothermality, 
and 
temperature 
annual range). 

Fewer 
Venezuelan 
citizens will be 
exposed to T. 
cruzi vectors 
over the next 
50-70 years. 

Predictions can 
enhance ability to 
prevent and 
control Chagas 
disease 
transmission in 
Venezuela in the 
future. 

Several factors 
that may affect 
Venezuela’s 
vulnerability to T. 
cruzi transmission 
via triatomine 
vectors were not 
included in the 
analysis. 
 
There is a debate 
on the optimal 
spatial resolution 
to be used in 
ENM studies, 
depending on the 
source of data. 
Data in this study 
was derived from 
a geographic 
range map based 
on occurrence 
points, and thus 
may not 
accurately reflect 
areas where the 
species are 
absent. Over 
estimation of 
species 
distributions may 
have resulted, 
leading to false 
positives in the 
distribution data.  
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References Study area  
(projection 
periods) 

Vector species 
data  
(source) 

Chagas 
disease data 

Covariate data Climate 
change 
models/ 
scenarios 

Vector 
Species 
Distribution 
Model 

Model 
Evaluation 

Key Findings Comments Future 
Considerations 

Limitations Quality 
assessment 
score 
(max=21) 

Costa et al. 
2014 

Brazil 
(2020, 
2050) 

5 species 
modelled; 
T. b. brasiliensis, 
T. b. 
macromelasoma, 
T. juazeirensis, T. 
sherlocki, T. 
melanica 
 
(entomological 
collections of 
Fundacao 
Oswaldo Cruz, 
state health 
departments, and 
field collections 
conducted by the 
Laboratorio de 
Biodiversidade 
Entomologica) 

Chagas 
specific 
entomological 
parameters 
(distribution of 
T. cruzi vector 
species) 

WorldClim 
7 bioclimatic 
variables 
(Annual mean 
temperature, 
mean diurnal 
temperature 
range, max. 
temperature of 
the warmest 
month, min. 
temperature of 
the coldest 
month, annual 
precipitation, 
precipitation of 
the wettest and 
driest months) 

 GARP, 
Maxent 
(ENMs) 

pAUC and 
the Jackknife 
approach 

An increase in 
mean 
temperature of 
1.72°C and a 
decrease in 
mean 
precipitation of 
55.6 mm are 
predicted for 
2050.  
 
Models project 
little change in 
species’ 
distributions 
under future 
climate change 
scenarios. 
 
T. b. 
brasiliensis has 
the greatest 
distributional 
potential to 
colonize new 
areas. 
 
 

Predict a 
relatively stable 
future 
distribution of 
studied 
triatomine 
species. 

Conclusions may 
help guide 
proactive 
surveillance and 
control activities 
to reduce risk of 
future Chagas 
disease 
transmission in 
Brazil. 

Some 
environmental/   
vector distribution 
data may be 
inaccurate or 
biased due to 
passive human 
transport, outdated 
surveys, 
misidentification, 
poor geo-
referencing, and 
hybrid phenotypes.   
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References Study area  
(projection 
periods) 

Vector species 
data  
(source) 

Chagas 
disease data 

Covariate data Climate 
change 
models/ 
scenarios 

Vector 
Species 
Distribution 
Model 

Model 
Evaluation 

Key Findings Comments Future 
Considerations 

Limitations Quality 
assessment 
score 
(max=21) 

Garza et al. 
2014 

North 
America 
(2050) 

2 species 
modelled; 
T. gerstaeckeri, T. 
sanguisuga 
 
(museum 
collection and 
voluntary 
collectors’ 
databases, and 
fieldwork 
conducted by 
study team 
members) 

Human 
population T. 
cruzi vector 
exposure risk 

WorldClim 
15 bioclimatic 
variables 
(Annual mean 
temperature, 
mean diurnal 
range, 
isothermality, 
temperature 
seasonality, ma. 
temperature of 
warmest month, 
min. temperature 
of coldest 
month, 
temperature 
annual range, 
annual 
precipitation, 
precipitation of 
wettest month, 
precipitation of 
driest month, 
precipitation 
seasonality, 
precipitation of 
wettest quarter, 
precipitation of 
driest quarter, 
precipitation of 
warmest quarter, 
precipitation of 
coldest quarter) 
 

CCCMA, 
CSIRO, 
HADCM3/ 
IPCC A2A, 
B2A 

MaxEnt 
(ENM) 
 

AUC A potential 
northern 
distributional 
shift of T. 
gerstaeckeri 
and a northern 
and southern 
shift in the 
distribution of 
T. sanguisuga 
from their 
current range 
are predicted 
due to climate 
change, 
indicating an 
increase in T. 
cruzi 
transmission 
risk for North 
American 
populations by 
the year 2050 
 
Annual mean 
temperature 
proved to be 
the biggest 
contributing 
climate variable 
to both vector 
species’ 
distributions. 
 

Predicted 
northward shift 
of Chagas 
disease risk due 
to climate 
change. 

More studies are 
needed to 
produce a 
comprehensive 
list of confirmed 
hosts for T. cruzi. 

The potential 
distribution of 
most hosts should 
be included in the 
ENMs. However, 
little is known 
about confirmed 
T. cruzi 
mammalian hosts, 
so they were not 
included in the 
models. 
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References Study area  
(projection 
periods) 

Vector species 
data  
(source) 

Chagas 
disease data 

Covariate data Climate 
change 
models/ 
scenarios 

Vector 
Species 
Distribution 
Model 

Model 
Evaluation 

Key Findings Comments Future 
Considerations 

Limitations Quality 
assessment 
score 
(max=21) 

Lambert et 
al. 
2008 

United 
States 
(2030) 

3 species 
modelled;  
T. lecticularia, T. 
protracta, T. 
sanguisuga 
 
(entomological 
literature) 
 
 
 
 

Human 
population T. 
cruzi vector 
exposure risk 

PRISM Climate 
Group 
Monthly 
minimum 
temperature 
data 
 
SEDAC 
population 
density data 
 

IPCC report, 
2001  
Prediction of a 
1°C (1.8°F) 
temperature 
increase by 
2030 
 

 ArcGIS 
 

Compared 
resulting model 
to: 
1) findings of a 
GARP model 
2) location of 6 
known 
autochthonous 
cases of Chagas 
disease in U.S. 

Much of the 
southern 
United States is 
currently at risk 
for Chagas 
disease 
transmission. 
 
The future 
increase in 
temperature 
predicted by 
the IPCC is 
expected to 
promote 
expansion of 
the current 
vector range 
into the central 
United States 
by the year 
2030. 
  

Potential for 
Chagas disease 
to emerge in the 
United States. 

Interdisciplinary 
collaboration 
between 
epidemiologists, 
entomologists, 
veterinarians, 
ecologists, 
geographers and 
infectious disease 
specialists is 
necessary to 
increase accuracy 
of future disease 
risk predictions. 
 
Comprehensive 
fine-scale studies 
of higher risk 
areas may be 
informed by 
study results. 
 
 
 

Classification of 
triatomine 
species, selection 
of the utilized 
threshold data, 
and use of 2000 
census data in 
predictive 
mapping. 
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References Study area  
(projection 
periods) 

Vector species 
data  
(source) 

Chagas 
disease data 

Covariate data Climate 
change 
models/ 
scenarios 

Vector 
Species 
Distribution 
Model 

Model 
Evaluation 

Key Findings Comments Future 
Considerations 

Limitations Quality 
assessment 
score 
(max=21) 

Medone et 
al. 
2015 

Venezuela, 
Argentina 
(2050) 

2 species 
modelled; 
Rhodnius 
prolixus, 
Triatoma 
infestans 

Force of 
Infection 
(FOI) 

WorldClim  
19 bioclimatic 
variables 
(Temperature 
seasonality, 
isothermality, 
temperature 
annual range, 
min. temperature 
of coldest 
month, 
precipitation of 
wettest quarter, 
max. 
temperature of 
warmest month, 
annual 
precipitation) 

HadGEM2-ES/ 
IPCC RCP 6.0 

Maxent 
(ENM) 

pAUC Climate change 
projections are 
estimated to 
have a 
differential 
impact on both 
species’ 
climatic niches.  
 
Forecasts 
reveal 
increased 
expansion of R. 
prolixus to new 
areas, whereas 
a future 
decrease in its 
current 
geographical 
range is 
expected for T. 
infestans.   
 
Overall study 
conclusions 
reflect a future 
decrease of 
suitability in 
areas of 
Venezuela and 
Argentina 
currently at 
moderate-to-
high risk of T. 
cruzi 
transmission, 
with a lower 
incidence of 
Chagas disease 
infections 
expected in 
these regions 
by 2050. 
 
Minimum 
temperature of 
the coldest 
month and 
mean 
temperature of 
the coldest 
quarter were 
found to be the 
biggest 
contributing 

Climate change 
is predicted to 
have varying 
influences on the 
FOI for Chagas 
disease in 
Argentina and 
Venezuela.  

Future research 
needed to assess 
the robustness 
and generality of 
conclusions about 
future T. cruzi 
transmission risk 
in Argentina and 
Venezuela. 

Failed to include 
socio-
environmental 
variables and 
adequate criterion 
of spatial and 
temporal scale 
selection to 
ENMs. 
  
Limited climate 
data due to fewer 
weather stations in 
Latin America, 
compared to other 
parts of the world. 
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References Study area  
(projection 
periods) 

Vector species 
data  
(source) 

Chagas 
disease data 

Covariate data Climate 
change 
models/ 
scenarios 

Vector 
Species 
Distribution 
Model 

Model 
Evaluation 

Key Findings Comments Future 
Considerations 

Limitations Quality 
assessment 
score 
(max=21) 

Tapia-Garay 
et al. 
2018 

Chile 
(2070) 

1 species 
modelled; 
T. infestans 
 
(National 
Museum of 
Natural History, 
Health Ministry of 
Chile, Public 
Health Institute, 
Entomology 
Institute of 
Metropolitan 
University of 
Educational 
Services, and 
literature reports) 
 

Number of 
confirmed 
Chagas disease 
cases from 
1939-1965  
 
(Parasitology 
Laboratory of 
the Medicine 
Faculty of the 
University of 
Chile) 

WorldClim 
7 bioclimatic 
variables 
(mean annual 
temperature, 
temperature 
seasonality, 
max. 
temperature in 
the warmest 
month, annual 
precipitation, 
precipitation 
during the driest 
month) 

INPE, IPCC 
RCP 2.6 and 
RCP 8.5 

MaxEnt 
(ENM) 

AUC The distribution 
of T. infestans, 
under two 
global climate 
change 
scenarios, 
showed low 
variation with a 
minimal 
reduction 
tendency in 
suitable areas.  
 
Maximum 
temperature in 
the warmest 
month and 
precipitation in 
the driest 
month 
contributed 
considerably to 
the future 
distributions of 
both T. 
infestans and 
Chagas disease. 
 
Annual 
precipitation, 
temperature 
seasonality, and 
the average 
temperature 
were also 
shown to be 
relevant to the 
Chagas disease 
model. 
 
Climate change 
predictions in 
Chile include 
an increase of 
temperature 
over the entire 
country. A 
decrease in 
precipitation is 
expected in 
Chile between 
2011-2070. 

Climate change 
appears to play a 
major role in the 
reemergence of 
Chagas’ disease 
and T. infestans 
in Chile. 

The impact of 
temperature and 
precipitation on 
the distribution of 
T. infestans 
indicates the need 
for aggressive 
vector control 
efforts in Chile. 

Possible sample 
bias in occurrence 
data.  

16 



 
  
 
 
 
 

20 
 

Vector species occurrence data 

Each study utilized varying sources to obtain prevalence occurrence data on T. cruzi 

vector species important to their geographic study area.  Ceccarelli & Rabinovich (2015) 

obtained data on the occurrence of five triatomine species endemic to Venezuela (Eratyrus 

mucronatus, Panstrongylus geniculatus, Rhodnius prolixus, Rhodnius robustus, and 

Triatoma maculata) from an atlas on triatomines produced by Carcavallo et al. (1999).  The 

Carcavallo et al. (1999) atlas was also the source of Rhodnius prolixus and Triatoma 

infestans species distribution data in Venezuela and Argentina utilized by Medone et al. 

(2015). Occurrence data of Triatoma infestans in Chile were compiled from multiple sources 

including the National Museum of Natural History, Health Ministry of Chile, Public Health 

Institute, Entomology Institute of Metropolitan University of Educational Services, and 

literature reports (Tapia-Garay et al., 2018). Data obtained from the entomological 

collections of Fundacao Oswaldo Cruz, state health departments, and field collections 

conducted by the Laboratorio de Biodiversidade Entomologica were assembled to provide 

occurrence points for five triatomine species (Triatoma b. brasiliensis, T. b. macromelasoma, 

T. juazeirensis, T. melanica, and T. sherlocki) widespread in Brazil (Costa et al., 2014).  The 

Atlas of Mexican Triatominae, compiled by Ramsey et al. (2015), was utilized to obtain 

occurrence records for 20 epidemiologically important species in North America including 

Eratyrus (one species), Paratriatoma (one species) and Triatoma (18 species) (Carmona-

Castro et al., 2018). Another study gathered occurrence data for two common North 

American vector species, T. gerstaeckeri and T. sanguisuga, from museum collections and 

voluntary collectors’ databases, and through fieldwork conducted by their study team 
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members (Garza et al., 2014). Finally, the occurrence data for three vector species common 

in the United States, including T. lecticularia, T. protracta, and T. sanguisuga, was sourced 

from entomological literature (Lambert et al., 2008). 

Covariate data 

For current climate conditions, most studies utilized varying combinations of 19 

available bioclimatic variables downloaded from WorldClim (Carmona-Castro et al., 2018; 

Ceccarelli & Rabinovich, 2015; Costa et al., 2014; Garza et al., 2014; Medone et al., 2015; 

Tapia-Garay et al., 2018).  WorldClim variables are derived from aggregated monthly 

climate data of global weather stations (Medone et al., 2015). One study acquired monthly 

minimum temperature data from the PRISM Climate Group dataset (Lambert et al., 2008). 

Among the selected studies, five also applied WorldClim bioclimatic predictor 

variables for periods of future projection (Carmona-Castro et al., 2018; Costa et al., 2014; 

Garza et al., 2014; Medone et al., 2015; Tapia-Garay et al., 2018).  Two studies utilized 

different sources for future climate variable data, including CCAF-Climate datasets 

(Ceccarelli & Rabinovich, 2015) and the 2001 Intergovernmental Panel on Climate Change 

(IPCC) report (Lambert et al., 2008). 

Data on population density, population growth, climate diversity (e.g. tropical and 

subtropical), and topographical variables (e.g. elevation, aspect, and slope) were described in 

individual studies. 

Global change models/scenarios 

The majority of reviewed studies used varying climate models and climate change 

scenarios for the future climate projections utilized in their distribution modeling approaches. 
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All climate change scenarios were derived from the Intergovernmental Panel on Climate 

Change (IPCC) Special Report on Emissions Scenarios (IPCC, 2001). Models and scenarios 

were selected as study authors deemed appropriate for their geographic study area.  

One study chose the general circulation model, European Hamburg global climate 

model version 6 (ECHAM6), for 2050 and 2070 projections, wherein they analyzed two 

climate change scenarios: representative concentration pathway (RCP) 4.5 (current emissions 

change trends) and RCP 8.5 (accelerated emissions trends with inadequate control policies) 

(Carmona-Castro et al., 2018). A second study utilized the CSIRO Mark 3.0 model for 2020, 

2060, and 2080 projections under two climate change scenarios, including A1B (maximum 

energy requirements with a balanced emphasis on all energy sources) and B1 (minimum 

energy requirements and emissions) (Ceccarelli & Rabinovich, 2015). Medone et al. (2015) 

used the HadGEM2-ES model and climate change scenarios RCP 6.0 (accelerated trends) 

and RCP 8.5 (accelerated emissions trends with inadequate control policies) for 2050 

projections. Another study employed three climate models, including the Canadian Centre 

for Climate Modelling and Analysis (CCCMA), the Hadley Center for Climate Change 

(HADCM3), and the CSIRO Mark 3.0, for its 2050 climate projections.  Two climate change 

scenarios were used in these models: A2A (increased population and regional economic 

development) and B2A (increased population and local environmental sustainability) (Garza 

et al., 2014). Lastly, Tapia-Garay et al. (2018) used the Instituto Nacional de Pesquisas 

Espaciais (INPE) climate model in two global change scenarios, RCP 2.6 (decreasing 

emissions trends) and RCP 8.5 (accelerated emissions trends with inadequate control 

policies), for their 2070 projections. 
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Two studies, Costa et al. (2014) and Lambert et al. (2008), did not utilize climate 

change models/scenarios prior to constructing their vector species distribution models. 

Vector species distribution models: Spatial Analyses 

All studies included in this review make use of spatial analysis, which is based on the 

idea of stacking layers containing different kinds of data (e.g. species occurrence data, 

climate data, population data, topographical data) and comparing them with each other on the 

basis of their geographical locations (Costa & Peterson, 2011). Among the selected studies, 

six used ecological niche modeling programs, including a maximum entropy approach to 

modeling species’ distributions (Maxent), the Genetic Algorithm for Rule Set Prediction 

(GARP), or both (Carmona-Castro et al., 2018; Ceccarelli & Rabinovich, 2015; Costa et al., 

2014; Garza et al., 2014; Medone et al., 2015; Tapia-Garay et al., 2018), and one utilized the 

ArcGIS modeling program (Lambert et al., 2008) towards projections of future T. cruzi 

vector species distributions in their geographic study areas. The details of these models are 

explained below. 

Ecological Niche Modeling: Maxent and GARP 

A couple of modeling approaches were utilized by studies to approximate species’ 

ecological niches. Ecological niche modeling (ENM) “applies machine learning techniques 

to predict vector species’ geographic distributions by relating species occurrence data to eco-

geographical variables” (Peterson, 2006, p. 1823).  Most studies included in this review 

utilized ENMs to better understand facets of Chagas disease transmission, specifically the 

predicted suitability of their geographic study area for the vector species (i.e. ecological 

niches) under current and future climate conditions. 
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Maxent and GARP are two ENM software programs used extensively in terms of 

their application to infectious disease systems (Costa, Almeida, & Peterson, 2014). Both 

programs relate environmental conditions (e.g. climate data) to known T. cruzi vector 

species’ occurrence records.  These relationships are then compared to the geographical 

landscape over which observations were obtained (Costa et al., 2014). 

Maxent is an inductive modeling program that utilizes presence only vector species’ 

occurrence data along with environmental variables to derive a probability of “potential” 

suitable habitat. This program is most useful when occurrence records are available, but 

limited data exists for range or habitat of a species of interest.  Environmental layers, such as 

climate and topographical data, are stacked upon each other within the model.  Occurrence 

data is subsequently added to the model, whereby Maxent can then look for relationships 

within the stacks of environmental layers.  Maxent focuses on fitting a probability 

distribution for occurrence of the species in question to a set of pixels across the study 

region, “based on the idea that the best explanation of unknown phenomena will maximize 

the entropy of the probability distribution, subject to constraints” (Peterson, Papes, & Eaton, 

2007, p. 69).  With regard to ENMs, these constraints consist of the values of pixels where 

the species has been detected (Phillips, Anderson, & Schapire, 2006).  Running a Maxent 

model results in values ranging from 0 to 1, with values closer to 0 indicating less habitat 

suitability for vector species and values closer to 1 designating higher habitat suitability 

potential (Carmona-Castro et al., 2018).  

The GARP computer program is based on a genetic algorithm, which divides 

occurrence data into subsets for model calibration (rule training and intrinsic testing) and 
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model evaluation (extrinsic testing). Through an iterative process, GARP develops a set of 

rules based on calibration data. Each rule is considered a gene.  The resulting set of genes are 

subsequently combined randomly to further generate many possible models which describe 

the potential of the species to occur under varied environmental conditions (e.g. precipitation 

levels, temperatures, elevation, ect.) (Stockwell, 1999).  

Four studies exclusively used Maxent to model their ecologic niches under current 

and future climate conditions (Ceccarelli & Rabinovich, 2015; Garza et al., 2014; Medone et 

al., 2015; Tapia-Garay et al., 2018). A couple of studies utilized both GARP and Maxent 

programs to produce their ENMs, albeit for different research purposes.  Carmona-Castro et 

al. (2018) aimed to compare GARP and Maxent modeling approaches in order to ascertain 

the program with greater predictive potential, whereas Costa et al. (2014) sought to combine 

models derived from both GARP and Maxent programs to develop a single, comprehensive 

ENM. 

ArcGIS 

Lambert et al. (2008) used a more simplified program, ArcGIS, for both their vector 

species distribution modeling and Chagas disease risk assessments. ArcGIS is a geographic 

information system (GIS) designed to produce detailed maps, build spatial models, and 

manage/analyze spatial data (Hanafi-Bojd, Sofizadeh, & Shoraka, 2018). 

Model Validation 

Receiver operating characteristic (ROC) analysis is widely used to evaluate the 

statistical accuracy of species distribution model predictions (DeLong, DeLong, & Clarke-

Pearson, 1988). Spatial model predictions can “present errors of omission (false negatives, 
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leaving out known distributional area) and errors of commission (false positives, including 

unsuitable areas in the prediction)” (p. 63). ROC analysis involves plotting sensitivity (i.e. 

proportion of known species’ presences predicted present or 1 – false negative rate) against 1 

– specificity (i.e. proportion of known species’ absences predicted present or false positive 

rate). Subsequent comparisons are made between the area under the ROC curve (AUC) and 

null expectations, either probabilistically or through bootstrap manipulations (Peterson, 

Papes, & Soberon, 2007). Theoretically, AUC = 1 indicates a perfect result; whereas a test 

performing no better than random yields AUC = 0.5 (Garza et al., 2014). Three studies under 

review utilized AUC to assess the predictive accuracy of their ENMs (Ceccarelli & 

Rabinovich, 2015; Garza et al., 2014; Tapia-Garay et al., 2018).  

Recently, the use of AUC as the standard measurement of accuracy for species’ 

distribution models has come under criticism. In light of these concerns, the partial AUC 

(pAUC) was proposed as an alternative summary measure to the full AUC. When using the 

pAUC, only regions of the ROC space where data have been observed are considered (Lobo, 

Jimenez-Valverde, & Real, 2008). As such, pAUC was chosen by three studies to evaluate 

their ENMs (Carmona-Castro et al., 2018; Costa et al., 2014; Medone et al., 2015).  

Alternatively, Lambert et al. (2008) utilized two alternative model validation 

methods; first comparing their results with an ENM generated with GARP, and secondly, 

comparing their results to the location of the six known autochthonous cases of Chagas 

disease in the United States. 
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Projections of Climate Change Impacts on T. Cruzi Transmission 

Carmona-Castro et al. (2018) examined the projected impact of climate change on T. 

cruzi vector transmission in North America.  Current and future distributions of 20 

epidemiologically important North American triatomine species were modeled, comparing 

predictive outcomes of both Maxent and GARP programs, with the inclusion of nine 

temperature/precipitation variables and the inclusion/exclusion of topographical variables.   

The climatic niche suitability for T. cruzi vectors was analyzed for 2050 and 2070 in both 

RCP 4.5 and RCP 8.5, resulting in significant distribution shifts predicted for the majority of 

species, with little difference found in ecological niche breadth projections made in RCP 4.5 

compared to RCP 8.5.  No significant range differences were detected between Maxent and 

GARP models; however, GARP models were shown to perform better overall (pAUC > 1). 

In addition, mean elevation was found to be the only important contributing variable to 

alterations in ENM range areas. All in all, size of current distribution range was found to be 

the best predictor of future distribution shifts, revealing the expected impacts of climate 

change to be specific to T. cruzi vector species and their geographical locations.  Finally, 

significant alterations in risk of vector-borne T. cruzi transmission to North American 

populations are projected for both future time periods; specifically, in Mexico an exposure 

threat increase of 1.48% and 1.76% for urban and rural populations (respectively) is expected 

by the year 2050. 

Cecarrelli & Rabinovich (2015) analyzed the potential consequences of future 

alterations in climate factors on the geographic distribution of five triatomine species in 

Venezuela. The future climatic niche suitability for each species were modeled with Maxent 
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software, under two IPCC future emissions scenarios of global climate change (A1B and 

B1), the Global Climate model CSIRO Mark 3.0, and three future projection periods (2020, 

2060, and 2080). A series of vulnerability indexes were also calculated at the county, state, 

and country level for Venezuela, measured to reflect the “human population potentially 

exposed to a change (intensity and direction) in the geographic distribution” of the five 

triatomine species analyzed (p. 1335). The AUC procedure was used to evaluate the 

goodness-of fit of the niche models’ predictions. Out of the 19 bioclimatic variables included 

in the Maxent models of suitability predictions for each vector species, only three made 

significant contributions to those projections (temperature seasonality, isothermality, and 

temperature annual range), trending generally toward a more variable and extreme climate as 

compared to current conditions. However, according to their models, global climate change 

is predicted to slightly decrease the overall future vulnerability of the Venezuelan population 

to T. cruzi vector species, even when accounting for future population growth. Thus, over the 

next 50-70 years, fewer areas in Venezuela are expected to have populations vulnerable to 

triatomine vector exposure.  

Costa et al. (2014) examined the distribution potential, and by extension, T. cruzi 

transmission risk, of the Triatoma brasiliensis species complex (T. b. brasiliensis, T. b. 

macromelasoma, T. juazeirensis, T. sherlocki, T. melanica) under present and projected 

future climate conditions in Brazil.  ENMs were constructed using both Maxent and GARP 

programs to estimate prospective distributions of all five triatomine vector species.  Each 

model incorporated seven bioclimatic variables, under global climate change scenarios for 

2020 and 2050.  The resulting models were combined and then evaluated to determine the 
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potential for climate change-mediated distributional shifts of vector species. In light of 

emerging concerns regarding the use of the AUC approach for model evaluation, the 

alternative pAUC method was used to assess ENMs for T. b. brasiliensis, T. b. 

macromelasoma, and T. juazeirensis. However, due to small sample sizes (N = 7) of T. 

melanica and T. sherlocki species, the pAUC method was deemed inappropriate for their 

model evaluations. Thus, a jackknife approach, designed for models based on limited 

occurrence data, was used instead.  Distributional predictions of ENMs for T. b. brasiliensis, 

T. b. macromelasoma, and T. juazeirensis were found to be statistically significant (P < 

0.0001).  Models for T. sherlocki and T. melanica, however, failed to yield predictions that 

were better than random. Although this study found T. b. brasiliensis to be the member of the 

complex with the greatest future distributional potential, the overall distribution of the 

complex, and thus T. cruzi transmission risk, appears relatively stable in Brazil through the 

year 2050. 

Garza et al. (2014) sought to forecast the future distributions of two common vector 

species epidemiologically important to North America, T. gerstaeckeri and T. sanguisuga, 

under predicted climate change conditions for the year 2050. The future climatic niche 

suitability for each species was modeled with Maxent software, incorporating 15 bioclimatic 

variables, two IPCC global climate change scenarios (A2 and B2), and three different general 

circulation models (CCCMA, CSIRO, and HADCM3) for the future projection period of 

2050. All models were evaluated and found to be statistically robust (AUC > 0.90). Annual 

mean temperature proved to be the biggest contributing climate variable to both vector 

species’ distribution models. Overall, a potential northern distributional shift of T. 
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gerstaeckeri and a northern and southern shift in the distribution of T. sanguisuga from their 

current range are predicted due to climate change, indicating an increase in T. cruzi 

transmission risk for North American populations by the year 2050.  

Tapia-Garay et al. (2018) aimed to determine the future risk of Chagas disease vector 

transmission in Chile due to climate change by modeling the distribution potential of the T. 

infestans vector species, as well as that of Chagas disease. Using the Maxent program, both 

distribution potential models were constructed with the incorporation of seven bioclimatic 

variables and under two IPCC global change scenarios, RCP 2.6 and 8.5, for the future 

projection period of 2070. Goodness-of-fit of the models was evaluated using the AUC, with 

both T. infestans and Chagas disease distribution models proving to be adequate (AUC > 

.95).  Climate change appears to play a major role in the reemergence of Chagas’ disease and 

T. infestans in Chile, with two climate variables, including the maximum temperature in the 

warmest month and precipitation in the driest month, contributing considerably to the 

distributions of both T. infestans and Chagas disease. Annual precipitation, temperature 

seasonality, and the average temperature were also shown to be relevant to the Chagas 

disease model. Although a high degree of overlap between Chagas disease and T. infestans 

distribution areas is predicted, the overall future distribution of T. infestans under the impact 

of projected climate changes showed a minimal reduction tendency in suitable areas of Chile 

by the year 2070.  

Medone et al. (2015) assessed the impact of climate change on the geographical 

distribution of two T. cruzi vector species (R. prolixus and T. infestans) epidemiologically 

important to Venezuela and Argentina. ENMs were constructed using the Maxent program to 
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estimate prospective distributions of both triatomine vector species.  Each model 

incorporated 15 bioclimatic variables and the bioclimatic projections of the HadGEM2-ES 

model under the IPCC global climate change scenario RCP 6.0 for current and 2050 

conditions. The pAUC was used to evaluate the goodness-of-fit of the models’ predictions.  

The Maxent models showed pAUC values of 1.001 for R. prolixus and 1.055 for T. infestans, 

indicating the robustness of the models. The epidemiological implications of current to future 

transitions in the climatic niche were estimated in terms of variations in the force of infection 

(FOI) on the populations of Venezuela and Argentina. FOI, defined as “the rate at which 

susceptible individuals acquire an infectious disease,” was assessed through conversion of 

climatic suitability to T. cruzi transmission risk. The pAUC procedure was used to evaluate 

the goodness-of-fit of the models’ predictions, with both species’ climatic niche models 

proving to be adequate (mean pAUC > 1.0). Minimum temperature of the coldest month and 

mean temperature of the coldest quarter were found to be the biggest contributing variables 

to climatic niche models for R. prolixus and T. infestans, respectively.  Climate change 

projections are estimated to have a differential impact on both species’ climatic niches, and 

thus, varying influences on the FOI for Chagas disease in Argentina and Venezuela. 

Forecasts reveal increased expansion of R. prolixus to new areas, whereas a future decrease 

in its current geographical range is expected for T. infestans.  Despite the heterogeneous 

results, overall study conclusions reflect a future decrease of suitability in areas of Venezuela 

and Argentina currently at moderate-to-high risk for T. cruzi transmission, with a lower 

incidence of Chagas disease infections expected in these regions by 2050. 
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Lambert et al. (2008) investigated the effects of projected climate change factors on 

the potential for emergence of Chagas disease in the United States by the year 2030. They 

also sought to determine the optimal climate conditions for triatomine vector species 

effectiveness, as well as the regions of the U.S. most at risk for future vector T. cruzi 

transmission. Current minimum temperature data was acquired through PRISM, whereas 

future temperature data was based upon IPCC predictions of a 1º C (1.8º F) increase in 

temperature by the year 2030 (IPCC, 2001). Using overlay analysis, the current and future 

climate data, occurrence data for three vector species (T. lecticularia, T. protracta, T. 

sanguisuga), and SEDAC population density data were incorporated into the ArcGIS 

distribution modeling program. The populations at highest risk for future T. cruzi 

transmission due to increased vector species activity were established with the spatial analyst 

zonal statistics tool in ArcGIS. The current population at increased Chagas disease 

transmission risk was delineated through analysis of the minimum threshold temperature for 

increased triatomine vector activity.  Further incorporation of temperature predictions for 

2030 allowed for the identification of at-risk populations under the future climate change 

scenario. The accuracy and utility of the resulting species distribution model was evaluated 

with two forms of model validation. First, the resulting model was compared to a GARP 

ENM. Species distribution range overlap between the study and GARP models occurred 

through the southeastern tip of New Mexico and southwestern Texas.  However, variation in 

the models occurs where the GARP range expands further north into the Texas panhandle 

and southeastern New Mexico; a difference likely due to the study’s use of an increased 

vector activity threshold in the ArcGIS models, whereas the GARP model is only based on 
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the vector’s distribution. Second, a comparison was made between model results and known 

locations of the six autochthonous cases of Chagas disease in the United States, with five out 

of the six autochthonous cases having occurred within the area of the model delineated as 

currently at higher risk for disease transmission.  Altogether, the model shows much of the 

southern United States is currently at risk for Chagas disease transmission, and the future 

increase in temperature predicted by the IPCC is expected to promote expansion of this range 

into the central United States by the year 2030 (Lambert et al., 2008).  

This section presents the results of the research described in the methods section.  The 

results are not interpreted in this section. Only write about results from your study, not those 

from other studies or from a ‘parent study’ of your research project. Use tables and graphs to 

display quantitative or qualitative data as needed.  Tables and graphs may be inserted in the 

body of the text or may be placed together at the close of the text prior to the REFERENCES 

section. If tables or graphs are inserted in the text, make efforts to minimize splitting them 

across pages.  If tables or graphs are split across pages, include headings on continuation 

pages as needed to facilitate understanding results.  

 
DISCUSSION 

Climate change is an escalating threat as its potential ramifications continue to be 

identified. While direct consequences of climate change, such as the development of extreme 

weather events or alterations in precipitation and temperature, are more apparent, indirect 

consequences are less discernable (Coumou & Rahmstorf, 2012). For instance, increases in 

temperature and modified weather patterns owing to climate change may indirectly alter 
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spatial patterns of disease vectors (Genchi et al., 2011). Arthropod vectors, including T. cruzi 

transmitting triatomines, are cold-blooded insects; thus, their internal temperature and, by 

extension, their ability to thrive are greatly affected by environmental temperatures. As such, 

a northern expansion of many arthropod vector species is anticipated in response to projected 

climate change. Furthermore, some vector-borne pathogens are particularly sensitive to 

variations in climate, so climate change may increase their incidence and/or intensity, thereby 

altering their current patterns of disease transmission. Ultimately, by modifying the global 

environment, climate change may enhance the transmission of infectious diseases, 

particularly those transmitted by vectors (Coumou & Rahmstorf, 2012), including Chagas 

disease.  

Triatomines, their biology, their potential as T. cruzi vectors, and their overall role in 

Chagas disease transmission cycles, are significantly impacted by climate factors. Possessing 

the ability to populate diverse ecosystems, from in and around domestic residences to a 

variety of outdoor settings, supplies them with an expansive range of climatic and ecologic 

tolerability. “Temporal and spatial changes in temperature, precipitation, and humidity affect 

their biology and ecology, which can alter the risk of transmitting T. cruzi” (Parra-Henao, 

Suárez-Escudero, & González-Caro, 2016, p. 1). In addition, triatomine species are highly 

vagile and can thrive in diverse altitudes, allowing them to exploit sundry food sources and 

terrains. Accordingly, environmental factors strongly influence habitat preferences of 

triatomine species, and thus, motivate their distributions and their ability to transmit Chagas 

disease (Bustamante, Monroy, Rodas, Juarez, & Malone, 2007). 
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Evidence suggests temperature plays an important role in triatomine behavior, T. 

cruzi development, and by extension, Chagas disease transmission. For one, development 

and life cycles of triatomine species are greatly impacted by temperature, as higher 

temperatures have been linked to accelerated development and increased species’ 

generations. A study conducted by Hack (1955) found one triatomine species, T. infestans, to 

have double the generations per year in hotter climates when compared to more temperate 

areas.  Another study discovered the life cycles of triatomine species are impacted by 

temperature as well, finding “a significant correlation between shortened development time 

and increased rearing temperature” (Carcavallo, 1999). Temperatures exceeding 30º C also 

increase the feeding rate of triatomines, enabling them to avoid dehydration (Carcavallo & 

Curto de Casas, 1996). Excessive temperatures can speed up T. cruzi development in vectors 

as well (Asin & Catala, 1995). Furthermore, conclusions of reviewed studies strengthen the 

link between temperature and the future global distributions of triatomine species, as 

temperature variables (e.g. temperature seasonality, isothermality, temperature annual range, 

minimum temperature of coldest months, annual mean temperature, and maximum 

temperature) were consistently found to be the major bioclimatic contributors to vector 

suitability model predictions (Ceccarelli & Rabinovich, 2015; Medone et al., 2015; Garza et 

al., 2014; Tapia-Garay et al., 2018; Lambert et al., 2008). These studies used a range of 

modeling approaches (e.g. ArcGIS, Maxent, and/or GARP), validated by varying analytical 

methods, and the results are generally consistent, indicating that the epidemics of Chagas 

disease are driven by temperature to some extent. 
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Relative humidity is another key factor that influences varying stages of the 

triatomine vector’s life cycle. Combined effects of temperature and humidity act to regulate 

vector feeding frequency, survival rate, and likelihood of T. cruzi infection and transmission 

(Carcavallo, 1999). Burgos et al. (1994) determined that high temperatures speed up vector 

metabolism, while low relative humidity increases feeding frequency in an effort to enhance 

water intake and avoid dehydration.  

Precipitation is another contributor to Chagas disease transmission. First, as a 

determinant of relative humidity (along with temperature and atmospheric pressure), levels of 

precipitation may influence the life cycle of triatomine vectors (Carcavallo, 1999). 

Additionally, Tapia-Garay et al. (2018) and Medone et al. (2015) found precipitation 

variables to be important contributors to their current and future vector distribution models, 

and thus, they are a decisive factor of the geographic limits within which Chagas disease 

transmission can be expected to continue.  

Many studies addressing the question of climate change impacts on vector-borne 

diseases have suggested that environmental change is likely to strengthen transmission 

potential and expand the geographical range of disease vectors into, for example, higher 

latitudes (Lafferty, 2009). However, recent studies suggest a shift (rather than expansion) in 

the geographical distribution of species and vector-borne diseases in the context of global 

warming (Lafferty, 2009; Rolandi & Schilman, 2012), consistent with results from several 

studies included in this review (Medone et al., 2015; Costa et al., 2014; Garza et al., 2014). 

For example, Garza et al. (2014) predicted a northern shift in the distribution of T. 

gerstaeckeri and a northern and southern distributional shift of T. sanguisuga from their 
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current ranges due to climate change. In contrast, vector species movements anticipated by 

Costa et al. (2014) models are almost negligible, suggesting the T. brasiliensis species 

complex in Brazil is unlikely to show large-scale distributional shifts in response to changing 

climates. Additional evidence suggests “insects adapted to higher latitudes may present a 

broader thermal-tolerance range than those adapted to lower latitudes,” leading some 

researchers to postulate that tropical insect vectors will exhibit increased sensitivity to 

temperature changes (Chown & Nicolson, 2004), and thus, differential impacts of climate 

change will occur across latitudes and species (Deutsch et al., 2008). In agreement with these 

considerations, Medone et al. (2015) observed a differential impact of climate change on two 

vector species: R. prolixus (tropical species) shows a future expansion to new areas, whereas 

T. infestans (sub-tropical species) shows a decrease in its future geographical range 

compared with current conditions. 

Tropical and subtropical regions are often burdened with parasitic diseases such as 

Chagas because those climates promote species richness (Dunn, Davies, Harris, & Gavin, 

2010), and therefore can offer a legion of potential vectors and hosts to support their life 

cycles. “Complex host interactions are key to survivability and sustainability of parasites, and 

these complex interactions can be altered by a changing climate to promote infectious 

diseases” (Daszak, 2000, p. 444). In accordance, climate change has the potential to alter or 

extend the natural ranges of these organisms and make regions of our globe that were 

previously uninhabitable for parasites habitable. 

Historically, vector-borne Chagas disease transmission has occurred primarily in parts 

of Mexico, Central, and South America, where triatomine species are adapted to domiciliary 
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and peri-domiciliary settings (Montgomery, Parise, Dotson, & Bialek, 2016). We would 

expect these regions of Latin America where Chagas disease is currently endemic to be most 

affected by future climate change; however, projections do not support this hypothesis. In 

fact, the majority of reviewed studies conducted in Latin American predict stable or 

decreased vector distributions and T. cruzi transmission rates as future consequences of 

climate change in their study areas (Ceccarelli & Rabinovich, 2015; Medone et al., 2015; 

Costa et al., 2014; Tapia-Garay et al., 2018). Two studies conducted in Venezuela anticipate 

a decreasing trend in the vulnerability of the Venezuelan population to T. cruzi infection 

between current and future climate conditions (Ceccarelli & Rabinovich, 2015; Medone et 

al., 2015). Medone et al. (2015) predicted similar impacts of climate change in Argentina, 

with the number of new cases of human T. cruzi infections per year expected to decrease by 

2050.  The distribution of the T. cruzi vector, T. infestans, also showed low variation, with a 

minimal reduction tendency under two global change scenarios in Chile, indicating a 

decreased future Chagas disease transmission risk in another endemic area of South America 

(Tapia-Garay et al., 2018). Similarly, ecological models for regions of Brazil predict little 

likely change in future T. cruzi vector species’ distributions due to changing climates (Costa 

et al., 2014). Notably, Mexico was the only geographical area studied in the Americas where 

Chagas disease is currently endemic and also predicted to be at increased transmission risk 

under future climate change scenarios (Carmona-Castro et al., 2018; Garza et al., 2014). For 

example, all species distribution models under future climate change scenarios conducted by 

Garza et al. (2014) predict a shift in the suitable habitat, and thus distribution, of the T. 

sanguisuga vector species towards northern and eastern regions of Mexico, supporting the 
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conclusion that an increase in temperature predicted by future climate estimations is 

correlated with a potential increase of Chagas disease risk in these regions of Mexico. 

Additionally, Carmona-Castro et al. (2018) noted a total of 88.9% of the current Mexican 

population reside in areas with potential exposure to at least one vector species. They predict 

consistent increases of 1.48% for urban populations and 1.76% for rural populations in the 

proportion of Mexico residents potentially exposed to T. cruzi vectors by the year 2050. 

While not currently considered endemic to Chagas disease, triatomines and T. cruzi 

infections are not foreign to the United States (Montgomery et al., 2016). T. cruzi 

transmission by blood transfusion in the United States has been reported for several decades 

(Leiby, Herron, Read, Lenes, & Stumpf, 2002), whereas house infestation by vectors and 

vector-borne T. cruzi transmission to human populations have been documented only 

recently in some areas of the southern U. S. (Beard et al., 2003), and are completely 

unknown in the other regions (Sarkar et al., 2010). In the United States, there are estimated to 

be at least 300,000 cases of Chagas disease, mostly among people originally from Latin 

American countries where Chagas disease is endemic (Montgomery et al., 2016). As of 2017, 

Chagas disease was reportable in only six U.S. states (Arizona, Arkansas, Louisiana, 

Mississippi, Tennessee, and Texas), and most cases identified were chronic cases and not the 

result of vector-borne transmission (Bennett et al., 2018). In fact, fewer than 30 cases of 

autochthonous (locally acquired) infection have been cited in the United States to date 

(Montgomery et al., 2016). Although 11 species of triatomine bugs have been documented in 

the United States, and all but one (Triatoma incrassata) have demonstrated infection with T. 

cruzi, the risk for autochthonous T. cruzi transmission in the United States is still currently 
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considered low because of better housing conditions (compared to much of Latin America), 

reduced exposure to triatomine vectors, and a lack of transmission associated with suspected 

domestic reservoirs (e.g. dogs) (Bennett et al., 2018).  However, climate change threatens to 

disrupt the epidemiological patterns of Chagas disease in the United States. According to the 

consensus of several studies, expansion of areas at increased risk for Chagas disease 

transmission is expected under future climate scenarios (Carmona-Castro et al., 2018; Garza 

et al., 2014; Lambert et al., 2008). Of particular interest is the predicted northern shift of 

triatomine species to central regions of the United States with historically unsuitable climates 

for T. cruzi vectors (Garza et al., 2014; Lambert et al., 2008). These findings could indicate a 

trend in future T. cruzi vector distributions that may not be limited to the United States, 

warranting further investigation. At a minimum, these results stipulate that while the 

vulnerability to Chagas disease of some currently endemic regions of Latin America may 

decrease due to climate change, geographic regions with climates that are favorable for 

vector-borne Chagas disease transmission could fluctuate to include a number of currently 

Chagas-free regions of the United States. 

 

Other factors associated with Chagas’ disease transmission 

Apart from variations in climate, additional factors not considered in vector species 

distribution models of studies included in this review may influence the distribution of 

triatomine vector species and T. cruzi transmission risk, under present and future conditions 

(Pulliam, 2000).  
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For instance, vegetation type is thought to be an important predictor of abundance for 

some triatomine species. Likewise, perturbed vegetation, in relation to agriculture and 

pasture, has been linked to increased triatomine abundance, suggesting that deforestation and 

habitat degradation are two important factors contributing to triatomine species’ distributions 

(Parra-Henao, Suárez-Escudero, & González-Caro, 2016). Alterations in land use also bring 

people into contact with wild triatomine vectors that they otherwise would not likely 

encounter (Guhl, Pinto, & Aguilera, 2009), incidentally enhancing these vectors’ primary 

role in T. cruzi transmission.  

Human movement has played an important role in altering populations at risk for 

Chagas disease transmission. Although initially a disease predominantly affecting the rural 

poor of Latin America, increased urbanization since the 1940’s has steered Chagas disease 

into cities (Coura & Vinas, 2010).  The past several decades have also seen “a dramatic 

increase in human migration from endemic areas of Latin America to Europe, North 

America, and the Western Pacific,” leading to the globalization of T. cruzi infections to non-

endemic regions. Additional factors contributing to the expansion of T. cruzi vectors and 

infected persons throughout the world include diminished global trade barriers and increased 

international travel (Klein, Hurwitz, & Durvasula, 2012, p. 2). 

Secondary (non-vectorial) T. cruzi infections can occur through vertical transmission 

(from mother to fetus), blood transfusion, organ transplantation, by consumption of 

contaminated food or drinks, or through laboratory accidents (Gascon, Bern, & Pinazo, 

2010). While domestic vector transmission remains the main route of T. cruzi infection in 

disease-endemic areas, vertical transmission is the most important route of transmission in 
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both non-endemic countries and in urban areas of disease endemic countries, with an 

estimated 1,000 children born annually with congenital Chagas disease.  To date, non-

endemic areas with reported cases of congenital Chagas disease include North America, 

Europe and Asia (Cucunuba et al., 2012).  Furthermore, orally acquired T. cruzi infections 

via consumption of contaminated food or drinks have been on the rise since 1965. South 

America, for example, has experienced Chagas disease outbreaks linked to ingestion of 

contaminated sugar cane, guava and acai juices (Pinto, Valente, & Valente, 2004).  

Limited or absent screening programs in both endemic and at risk non-endemic 

regions is another major contributor to the global Chagas disease burden. Due to the mostly 

asymptomatic nature of Chagas disease, screening is fundamental to its diagnosis at every 

stage. Detection at early stages of the disease allows for curative anti-parasitic treatment, 

while chronic stage diagnosis enables integral disease management that may prevent life-

threatening complications. Screening is also imperative to prevent person to person spread of 

Chagas disease, as may occur through vertical transmission, organ transplantation, and blood 

transfusion (Prat et al., 2019). 

Moreover, lack of provider awareness of Chagas disease is pervasive in non-endemic 

areas, creating another barrier to controlling Chagas disease transmission in these regions 

(Montgomery et al., 2016). For instance, Lambert et al. (2008) found that most healthcare 

providers in the United States are not familiar with Chagas disease; a fact that is particularly 

concerning as T. cruzi transmission is projected to escalate here in coming decades due to 

climate change and other contributing factors, such as human migration from Latin America. 

Regardless of where the initial T. cruzi infection is acquired, increasing provider awareness 
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can lead to improved disease diagnosis and management for all patients, and ultimately aid in 

controlling the spread and severity of T. cruzi infections (Montgomery et al., 2016).  

Finally, socioeconomic factors have historically, and will likely continue to play a 

primary role in T. cruzi vector exposure. Poor quality housing and unsanitary living 

conditions (e.g. thatched roofs, mud-stick walls, and dirt floors) encourage triatomine bugs to 

thrive and infest dwellings, thereby allowing for increased contact with human hosts (Starr, 

Rojas, Zeledon, Hird, & Carpenter, 1991). Substandard living conditions are more common 

in rural, endemic regions of Latin America, creating favorable habitats for triatomine vectors 

in these areas. Chagas’ association with poor and marginalized populations has resulted in a 

social stigmatization of this disease in many endemic regions, discouraging those who may 

be infected to seek medical care, as a diagnosis could lead to embarrassment, or even 

exclusion from the labor market (Klein, Hurwitz, & Durvasula, 2012).  As Chagas disease 

continues to spread to non-endemic areas of the world, such as North America, attention 

should be paid to existing conditions in these regions that promote the spread of T. cruzi 

infections. For instance, certain low-income areas in Texas, referred to as “colonias,” are at 

an increased risk for triatomine species infestation. Characterized by loosely constructed 

residences and poor sanitation systems, these neighborhoods offer suitable conditions and 

accessible habitats for T. cruzi vector species to thrive within while in close proximity to 

their human hosts (Short, Caminade, & Thomas, 2017). Additionally, socioeconomic factors 

specific to immigrant populations in non-endemic regions, including “cultural and language 

barriers, lack of a regular healthcare provider, lack of access to affordable insurance or 

healthcare, lack of information, job constraints, lack of trust in government programs, and 
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fear,” further limit the ability to provide these at-risk populations with culturally appropriate 

care (Klein, Hurwitz, & Durvasula, 2012, p. 9).  

Ultimately, these additional factors affecting vector species spread and T. cruzi 

transmission must be considered in context with the anticipated effects changing climate 

variables are forecasted to have on the global spread of Chagas disease.  

Limitations of studies 

The limitations of all studies included in this review begin by the very nature of their 

ecologic design. Despite the many practical advantages of ecologic studies, including low 

cost and convenience, there are several inherent methodological issues that can hinder 

making causal inferences based on their conclusions. The most significant limitation of using 

ecologic associations to draw causal inferences is ecologic bias, “which is the failure of 

expected ecologic effect estimates to reflect the biologic effect at the individual level” 

(Morgenstern, 1995, p. 71). The heterogeneity of aggregate (ecologic) level exposure and 

covariate data underlies ecologic bias, as “aggregate data cannot characterize within-group 

variability in exposure and covariate variables.”  Consequently, supplementing aggregate 

data with individual-level data is necessary to remove ecologic bias (Wakefield & Haneuse, 

2008, p. 908).   

An additional factor that can limit the accuracy of reviewed studies’ species 

distribution models is sampling bias, as it may lead to an over or under estimation of vector 

species occurrence data (Rocchini et al., 2017). For example, Tapia-Garay et al. (2018) found 

the presence probability of T. infestans to be most concentrated in the central zone of Chile, 

despite more northern regions of Chile offering better suited habitats for this vector species. 
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One possible explanation for this finding is a sample bias in their occurrence data, seeing as 

good climatic conditions in the central zone of Chile allow for better study of this area, as 

opposed to the northern desert, where high altitudes and extreme climates prevent adequate 

sampling of the region. Considering such uncertainties that potentially undermine the outputs 

of species distributions models is critical for interpreting results accurately and informing 

appropriate Chagas disease prevention and control efforts (Rocchini et al., 2017). 

Furthermore, limitations due to the spatial resolution and interpolation process 

associated with the WorldClim dataset utilized by the majority of reviewed studies should be 

considered. In particular, limited weather stations in Latin America (relative to other parts of 

the world) necessitates interpolation of climate variables from larger distances in these 

regions, making the reliability of the resulting climate variables uncertain. Thus, the 

incorporation of additional environmental variables and/or socioeconomic factors is required 

to make inferences linking the climatic suitability of vector species to T. cruzi transmission 

risk (Medone et al., 2015). 

The complexity of the T. cruzi transmission cycle presents another limitation to 

studies included in this review. As noted by Garza et al. (2014), T. cruzi transmission 

involves various insect vectors and mammalian hosts in domestic, peri-domestic, and 

sylvanic cycles. Although ideal modeling exercises would include the potential distribution 

of all hosts and vectors, relatively little is known about which mammalian species are 

confirmed hosts of T. cruzi; thus, including unconfirmed mammalian hosts in distribution 

models would only add confusion to our understanding of this biological interaction.  
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Additional limitations of studies included in this review concern their use of the AUC 

or the pAUC to evaluate their vector species distribution or ecological niche models. The 

AUC has long been considered the standard method to estimate the predictive accuracy of 

distributional models derived from presence absence species data (Lobo et al., 2008), and 

thus, was utilized by several studies to evaluate their ecological niche models (Ceccarelli & 

Rabinovich, 2015; Garza et al., 2014; Tapia-Garay et al., 2018). However, there are several 

characteristics of the AUC that make its use as a measure of distribution model accuracy 

questionable. First, AUC scores disregard the predicted probability values and the goodness-

of-fit of distribution models (Ferri, Flach, Hernandez-Orallo, Senad, 2005). “AUC is a 

discrimination index that represents the likelihood that a presence will have a higher 

predicted value than an absence, regardless of the goodness of fit of the predictions” (Lobo et 

al., 2008, p. 146). As such, a poorly fitted model (i.e. one that over/under estimates all 

predicted values) may have a good discrimination power. A well-fitted model with a poor 

discrimination power is also possible, if, for instance, probabilities for presences are only 

moderately higher than those for absences (Hosmer, Lemeshow & Sturdivant, 2013).  

Another weakness of ROC plots is that they “summarize model performance over all 

conditions a model could operate in” (Lobo et al., 2008, p. 146). However, researchers are 

typically interested in one or a few possible situations, rather than all of them. For example, 

extreme right and left areas of the ROC space correspond to high false-positive and high 

false-negative rates, and are thus, generally useless (Baker & Pinsky, 2001).  

In an effort to mitigate the above concerns, the pAUC has been proposed as an 

alternative to the full AUC (Baker & Pinsky, 2001), and as such, three studies included in 
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this review chose to use the pAUC to validate their ENMs (Carmona-Castro et al., 2018; 

Medone et al., 2015; Costa et al., 2014). However, the pAUC fails to avoid all drawbacks 

associated with the full AUC (Lobo et al., 2008). First, both pAUC and AUC give equal 

weight to omission and commission errors, yet these errors do not share equal importance in 

many applications of species distribution modeling (Peterson, 2006). For instance, there is a 

higher degree of uncertainty associated with absences compared to presences when obtaining 

presence-absence species data. Recorded absences may indicate low detectability of the 

species or they may reflect non-sampled areas; thus, the likelihood of false absences is higher 

than false presences. Consequently, by assigning equal weight to commission errors 

(misclassification of absences) and omission errors, the results of the AUC and pAUC may 

be misleading (Elith et al., 2006). Finally, and most importantly, “species distribution data 

are referred to a concrete geographical extent, and increasing the geographical extent outside 

presence environmental domain entails obtaining higher AUC scores” (p. 147). Thus, simply 

enhancing the area of the territory modeled allows artificially high AUC scores to be 

obtained. Decisively, this feature prevents use of both the AUC and pAUC as accurate 

performance measures of predictive species distribution models (Lobo et al., 2008). 

It is important to consider all of these study limitations and their potential influence 

on the relationships identified between changes in climate and future Chagas disease 

transmission. 
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Future recommendations 

The following directions for future research are suggested to further our current 

understanding of the associations between climate change and the global distribution of 

Chagas disease.    

First, predicting the biological effects of climate change on vector T. cruzi 

transmission requires a more thorough understanding of Chagas disease ecology. To this end, 

additional research is necessary to produce an exhaustive list of confirmed T. cruzi 

mammalian hosts. Development of innovative modeling techniques has enabled production 

of predictive lists of potential hosts for other emerging infectious diseases (e.g. 

leishmaniasis) (Stephens et al., 2009); these techniques may also be applied to Chagas 

disease.  

Secondly, the application of novel, combined spatiotemporal modeling approaches in 

Chagas disease research is required to attain a more comprehensive understanding of the 

complex relationship between T. cruzi vectors, hosts, and anticipated changes in climate, and 

by extension, more accurate predictions of future Chagas transmission risk areas.  

Furthermore, developing accurate global climate change scenarios based on 

projections of future population growth and socio-economic development necessitates the 

consideration of the potential confounding effects of urbanization, migration, tourism, and 

other human behaviors.       

Additionally, the importance of environmental factors, insect vectors, and mammalian 

hosts to T. cruzi transmission suggests that interdisciplinary collaboration between 

epidemiologists, entomologists, veterinarians, ecologists, geographers and infectious disease 
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specialists is necessary to advance knowledge of this complex disease system, estimate the 

cost and effectiveness of control strategies, and ultimately address the current and future 

public health challenges Chagas disease poses to global populations.  

Another area in need of special attention relates to quality control of Chagas disease 

incidence and vector species occurrence data from reporting agencies (e.g. laboratories, 

hospitals and clinics, health departments, and other governmental agencies). Addressing 

existing issues including lack of healthcare provider awareness, under-reporting and missed 

diagnosis, limited screening and diagnostic modalities, insufficient patient reporting and 

Chagas disease stage reporting, and vector species misidentification will vastly improve the 

accuracy of data gathered through T. cruzi surveillance activities.  Improvement of disease 

and vector species surveillance in both endemic and non-endemic areas is essential for 

effective Chagas disease prevention and control programs.  

Developing strategies to enhance patients’ access to diagnosis and treatment is an 

essential component to reducing the global Chagas disease burden. Although two anti-

parasitic drugs, benznidazole and nifurtimox, are currently available for the treatment of 

Chagas disease, various factors hinder their effective usage, including “lack of access to 

diagnosis, drug toxicity and absence of treatment algorithms to address adverse effects, 

failures in drug supply and distribution, and inconsistent drug efficacy against the 

symptomatic chronic stage.” To address these barriers to effective Chagas disease treatment, 

future research and development should focus on expanding the clinical study of new anti-

parasitic drugs, discovering improved biomarkers that enable monitoring of disease 
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progression, and developing inexpensive and accessible diagnostic tools (Alonso-Padilla et 

al., 2019, p. 145).  

Finally, the successes and failures of current T. cruzi vector control and Chagas 

disease management programs in endemic countries can inform future control efforts in both 

endemic areas of Latin America and at risk non-endemic regions, including the United 

States. Several intergovernmental initiatives between endemic Latin American countries 

were developed in the 1990’s, aimed at decreasing Chagas disease transmission to human 

hosts by focusing on domestic T. cruzi vector control. As a result of multifaceted campaigns 

involving “widespread insecticide use, improved housing conditions, and promotion of 

public education”, annual mortality and morbidity rates due to Chagas disease have steadily 

fallen between 1990 and the present (p. 2). However, large sylvanic mammalian reservoirs of 

the parasite have persisted over time, resulting in new human infections and contributing to 

the failure of eradicating the disease entirely (Klein, Hurwitz, & Durvasula, 2012).  In 

addition, persistent house re-infestation due to residual peri-domestic foci after insecticide 

application and the development of pyrethroid insecticide resistance casts doubt on the 

feasibility of eliminating Chagas disease through vector control methods alone (Gaspe et al., 

2018).  

Vector control efforts also do not address T. cruzi transmission through other routes 

(e.g. blood and organ donors, congenital transmission, oral transmission), socioeconomic and 

cultural aspects of Chagas disease transmission, or barriers to diagnosis and treatment; thus, 

T. cruzi continues to thrive in human hosts throughout both endemic and non-endemic 

regions (Klein, Hurwitz, & Durvasula, 2012).  
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Somewhat surprisingly, the overall wealth of a government does not appear to 

mitigate the socioeconomic factors associated with Chagas disease transmission. In fact, 

recent studies found that “90% of the people infected with T. cruzi now live in Latin 

America’s three wealthiest economies: Argentina, Brazil, and Mexico” (p. 145) Further, in 

the United States of America, the richest country of the western hemisphere, there are “at 

least 300,000 immigrants from Latin America living with Chagas disease with limited or no 

access to treatment” (Alonso-Padilla et al., 2019, p. 145). These findings suggest that a lack 

of awareness or lack of interest, rather than lack of resources, on the part of governments of 

endemic and non-endemic countries are instrumental to the Chagas disease burden in these 

areas. 

Given the biological, social, political and economic aspects of Chagas disease, 

creating sustainable, comprehensive disease control programs is a challenge. First, in order to 

complement existing vector control programs in endemic countries, the importance of peri-

domestic and sylvanic areas as sources re-infestation must be emphasized, and as such, 

should be focal points of disease surveillance activities (Yoshioka, Provedor, & Manne-

Goehler, 2018). Enhancing community-based vector control interventions that encourage 

regular residential insecticide spraying by householders is another sustainable, low cost, and 

highly effective method to prevent house infestation by triatomine vectors, especially in 

remote, resource poor endemic regions (Cecere, Rodriguez-Planes, Vazquez-Prokopec, 

Kitron, & Gurtler, 2019). Historically, endemic country-level Chagas disease control policies 

mainly emphasize prevention of vector-borne T. cruzi transmission, overlooking the 

importance of early diagnosis, treatment and education to the successful elimination of 



 
  
 
 
 
 

52 
 

Chagas disease (Yoshioka, Provedor, & Manne-Goehler, 2018).  Community health 

interventions, specifically in situ screening interventions, are useful additions to current 

vector control strategies, as they increase access to diagnostic screening, enhance awareness 

and knowledge of Chagas disease, facilitate access to treatment, and prevent further spread of 

Chagas disease through secondary transmission routes (Prat et al., 2019). Non-endemic 

countries also have an important role to play in aiding in the global efforts to eliminate 

Chagas disease. “Most importantly, healthcare providers in non-endemic countries with large 

immigrant populations from Chagas disease endemic areas need to be educated about the 

existence of the disease, its clinical manifestations, and the appropriate mechanisms of 

diagnosis and treatment of infected patients” (p. 9). Facilitating at-risk populations’ access to 

healthcare services and implementing systemic screening protocols for pregnant women and 

blood / organ / tissue donors from endemic countries are additional recommendations for the 

management of Chagas disease in non-endemic countries (Klein, Hurwitz, & Durvasula, 

2012). Ultimately, coordination among regional, national, and international policymakers, 

researchers, healthcare providers, and public health professionals is essential to the success of 

future Chagas disease elimination efforts. 

CONCLUSION 

The weight of evidence regarding the influences climate change may pose on T. cruzi 

vector species distributions demonstrates the sensitivity of Chagas disease transmission to 

future climate variability. In order to advance forecasts for the impact climate change may 

have on Chagas disease transmission in the Americas, it is imperative to further develop, 

utilize, and perhaps combine predictive species distribution modeling approaches that 
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integrate accurate, long term data on climate variables, vector species distributions, Chagas 

disease incidence, as well as other socio-ecological variables. While the task at hand is 

considerable and will require a concerted effort to achieve, the insights it can contribute to 

future global health efforts may prove to be invaluable. Chagas disease has become more 

than a neglected disease that mainly affects the rural poor in Latin America: it is growing into 

a worldwide concern that can have severe consequences for human health over the long term.  

If it is not taken seriously now, it could become an insurmountable threat to global public 

health in the future. 
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