
Tessum et al., Sci. Adv. 2021; 7 : eabf4491     28 April 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 6

S C I E N C E  P O L I C Y

PM2.5 polluters disproportionately and systemically 
affect people of color in the United States
Christopher W. Tessum1*, David A. Paolella2†, Sarah E. Chambliss3, Joshua S. Apte4,5,  
Jason D. Hill6, Julian D. Marshall2

Racial-ethnic minorities in the United States are exposed to disproportionately high levels of ambient fine particulate 
air pollution (PM2.5), the largest environmental cause of human mortality. However, it is unknown which emission 
sources drive this disparity and whether differences exist by emission sector, geography, or demographics. Quan-
tifying the PM2.5 exposure caused by each emitter type, we show that nearly all major emission categories—
consistently across states, urban and rural areas, income levels, and exposure levels—contribute to the systemic 
PM2.5 exposure disparity experienced by people of color. We identify the most inequitable emission source types 
by state and city, thereby highlighting potential opportunities for addressing this persistent environmental 
inequity.

INTRODUCTION
Ambient fine particulate matter air pollution (PM2.5) is responsible 
for 85,000 to 200,000 excess deaths per year in the United States (1, 2), 
with health effects observed even at concentrations below the cur-
rent national standard of 12 g m−3 (3–5). Racial-ethnic and socio-
economic disparities in air pollution exposure in the United States 
are well documented (6–10) and have persisted despite overall de-
creases in PM2.5 pollution (11–13).

Most evidence of exposure disparity relies on measured or empir-
ically modeled ambient concentrations or on assessment of proxim-
ity to industrial or roadway emission sources (6, 10, 12–20). From 
the existing evidence, however, it is not possible to determine the 
relative contributions of different source types to racial-ethnic dis-
parity in exposure to PM2.5. Here, we model anthropogenic sources 
of PM2.5 exposure resolved by race and ethnicity and show that 
nearly all major emission source sectors disproportionately affect 
people of color (POC).

We estimate exposure impacts for each emission source type on 
five racial-ethnic groups based on the U.S. Census: White (62% of the 
population), Black (12%), Hispanic (17%), Asian (5%), and POC (38%; 
see Materials and Methods for details). As a proxy for exposure to 
PM2.5, we calculate population-weighted average ambient PM2.5 
concentrations for each race-ethnicity based on census-designated 
residential location.

We examine exposure disparity—the population-weighted con-
centration difference between each racial-ethnic group and the pop-
ulation average—in relative (percent) and absolute (g m−3) terms. 
Sources with the highest relative disparity may yield the largest dis-
parity mitigation per unit mass of emission reduction, whereas 
sources with the highest absolute disparity may have the greatest 
potential for overall disparity reduction.

RESULTS
Results indicate that emission sources that disproportionately expose 
POC are pervasive throughout society. Estimated year 2014 total 
population average PM2.5 exposure from all domestic anthropogenic 
sources is 6.5 g m−3 in the contiguous United States; exposures are 
higher than average for POC, Blacks, Hispanics, and Asians (7.4, 
7.9, 7.2, and 7.7 g m−3, respectively; Fig. 1, B to E) and lower than 
average for Whites (5.9 g m−3; Fig. 1A). Whites are exposed to lower- 
than-average concentrations from emission source types causing 
60% of overall exposure (Fig. 1A), with an overall relative exposure 
disparity of −8% (−0.55 g m−3 absolute disparity) compared with 
the population average. Conversely, POC experience greater-than- 
average exposures from source types, causing 75% of overall expo-
sure (Fig. 1B); their overall exposure disparity is 14% (0.90 g m−3). 
Blacks are exposed to greater-than-average concentrations from 
source types contributing 78% of exposure (Fig. 1C), with an overall 
exposure disparity of 21% (1.36 g m−3). Hispanics and Asians are 
disparately exposed to PM2.5 from 87 and 73% of sources, respec-
tively, and experience 11% (0.72 g m−3) and 18% (1.20 g m−3) overall 
exposure disparities, respectively (Fig. 1, D and E).

Grouping the source types (Fig. 1, A to E) into 14 source sectors 
(Fig. 1, F to J) reveals that source types that disproportionately ex-
pose POC, Blacks, Hispanics, and Asians to higher-than-average 
concentrations are dominant in most sectors. Whites are exposed to 
lower-than-average concentrations from most emission sectors (Fig. 1F). 
Blacks are exposed to higher-than-average concentrations from all 
sectors (Fig. 1H).

Of the emission source sectors that cause the largest absolute dis-
parities, four out of the top six source sectors are the same for POC, 
Blacks, Hispanics, and Asians: industry, light-duty gasoline vehi-
cles, construction, and heavy-duty diesel vehicles (Fig. 1, G  to  J). 
Residential gas combustion and commercial cooking are among the 
largest sources of relative disparities for all four groups (e.g., 41 and 
35%, respectively for POC; Fig. 1, G to J). The only sectors that affect 
Whites substantially more than average are coal electric generation 
and agriculture (8 and 4% relative disparity, respectively; Fig. 1F). 
Consistent with previous findings (11, 21), we find that POC, His-
panics, and Asians are exposed to less PM2.5 from coal electric gen-
erators than average (−13%, −38%, and −18%, respectively), and 
Blacks are exposed to 18% more than average (Fig. 1H).
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Nationally, racial-ethnic exposure disparities are not caused by a 
small number of emission sources; instead, most source types and 
sectors result in higher-than-average exposures for POC and lower- 
than-average exposures for Whites (Fig. 1). By examining the per-
cent of exposures caused by these disproportionately exposing 
emission source types for each group [for example, 40% for Whites 
(Fig. 1A) and 75% for POC (Fig. 1B) nationally], we find that this is 
also largely true within individual U.S. states, within individual ur-
ban and rural areas, across incomes, and across exposure levels 
(Figs. 2 and 3).

In 45 of the 48 states studied, disproportionately exposing sources 
cause the majority of POC exposure (Fig. 2A). In the (population- 
weighted) average state, 78% of exposure is caused by sources that 
disproportionately expose POC (White: 29%; Black: 77%; Hispanic: 
73%; and Asian: 75%; Figs.  2A and 3,  C  to  E; these average-state 
disparities differ from the national average disparities above be-
cause national averages include disparities occurring among states 
in addition to within states).

We observe the same effect within urban areas (Fig. 2B), with 
73% of exposure in the (population-weighted) average urban area 

caused by sources that disproportionately expose POC (White: 31%; 
Black: 71%; Hispanic: 71%; and Asian: 56%; Figs. 2B and 3, H to J). 
There is a notable exception: Asians are less exposed than average in 
many urban areas in California with large Asian populations (data 
file S1; for example, Los Angeles, San Francisco, and San Jose). In 
the (population-weighted) average urban area outside California, 
67% of Asian exposure is caused by source types that disproportion-
ately expose Asians, compared with 56% when including California. 
Disparities also consistently occur in rural areas (defined here as the 
complement of urban areas), where a large proportion of exposure 
is caused by sources that disproportionately expose POC (White: 39%; 
POC: 62%; Black: 63%; Hispanic: 57%; and Asian: 74%; Figs. 2C and 
3, M to O). However, disparities in rural areas are not as pronounced 
as in urban areas (Fig. 2, B and C).

Last, systemic disparity exists at all income levels. Consistent 
with a large body of evidence (12, 22), we find that racial disparities 
are not simply a proxy for economic-based disparities. POC at ev-
ery income level are disproportionately exposed by the majority of 
sources, with a population-weighted average across income bins of 
76% of exposure caused by source types that disproportionately 

A B C D E

F G H I J

Fig. 1. Source contributions to racial-ethnic disparity in PM2.5 exposure. (A to E) Individual source type (n = 5434 source types) contributions to exposure (y axis) and 
% exposure disparity (x axis, truncated at 200%, positive values are shaded red, negative values are shaded blue), with dashed lines denoting percent exposure caused by 
sources with positive exposure disparity. (F to J) Sources in (A) to (E) grouped into source sectors (n = 14 groups) and ranked vertically according to absolute exposure 
disparity, proportional to the area of each rectangle. As shown in (B), POC experience greater-than-average exposures from source types causing 75% of overall exposure. 
Source: data file S1, which also includes results for individual states and urban areas.
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expose POC (Fig. 2D and fig. S1). Exposures vary more by race- 
ethnicity than by income: The difference in average exposure be-
tween POC and Whites is 2.4 times larger than the range in average 
POC exposure among income levels (data files S1 and S2).

DISCUSSION
Our results come with caveats. First, we use emission amounts and 
locations, reduced complexity air quality modeling, and population 
counts that all contain previously quantified uncertainty (11, 23; 
Supplementary Text). However, our core findings are consistent across 
states, urban and rural areas, and concentration levels, rendering it 
improbable that they are attributable to model or measurement bias. 
Second, because aggregate results are more robust than results for 
any single location, we recommend additional analysis incorporat-
ing local data and expertise before local actions are taken. Third, 
our results for states and for urban and rural areas reflect exposure 
to ambient PM2.5, including contributions from emission sources 
located outside the state, urban area, or rural area. This has implica-
tions for local authorities, who may not have jurisdiction over all 

sources of their exposure. Last, this analysis focuses on outdoor con-
centrations at locations of residence. Disparities in associated health 
impacts would also reflect racial-ethnic variability in mobility, micro-
environment, outdoor-to-indoor concentration relationships, dose- 
response, access to health care, and baseline mortality and morbidity rates.

We have shown here that most emission source types—representing 
~75% of exposure to PM2.5 in the United States—disproportionately 
affect racial-ethnic minorities. This phenomenon is systemic, hold-
ing for nearly all major sectors, as well as across states and urban 
and rural areas, income levels, and exposure levels. Industry, light- 
duty gasoline vehicles, construction, and heavy-duty diesel vehicles 
are often among the largest sources of disparity, but this can vary 
widely by source type and location. Because of a legacy of racist 
housing policy (fig. S2; supporting results) and other factors, racial- 
ethnic exposure disparities have persisted even as overall expo-
sure has decreased (11–13). Targeting locally important sources for 
mitigation could be one way to counter this persistence. We hope 
the information provided here can help guide national, state, and 
local stakeholders to design policies to efficiently reduce environ-
mental inequity.

A B

C D

Fig. 2. Percent of PM2.5 exposure caused by emission source types that disproportionately expose people of color (POC) and Whites. Data shown for (A) U.S. states 
(n = 48 states), (B) urbanized areas (n = 481 areas), (C) rural areas in each state (n = 48 states), and (D) income bins (n = 16 bins; last bin is >$200,000). Icon area is propor-
tional to population; shaded areas are kernel density estimates. A y axis value of 50% would represent equity for that group (i.e., for the population-average exposure), 
meaning that half of their exposure comes from source types that disproportionately expose them and the other half is from source types that expose them less than 
average. Across geographies and levels of exposure (A to C), as well as incomes (D), most emission sources consistently result in higher exposures for POC and lower ex-
posures for Whites. Source: data file S2.
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MATERIALS AND METHODS
We use a source-receptor matrix (24) created using the InMAP (25) 
air quality model to independently estimate concentrations in the 
contiguous United States resulting from anthropogenic emissions. 
We consider all 5434 source types [i.e., all U.S. Environmental Pro-
tection Agency (EPA) Source Classification Codes (SCCs) with non-
zero emissions; we exclude the 8378 SCCs without emissions associated 
with them] in the 2014 EPA National Emissions Inventory (NEI) 
v1. County-level emissions are allocated to individual grid cells 
within the county using spatial surrogates. Emissions processing is 
described in further detail by Tessum et al. (11). To focus on im-
pacts from modifiable factors, we do not investigate here emissions 
from biogenic, wildfire, or international sources. Exposure and health 
impacts resulting from these additional sources are quantified by 
Tessum et al. (11).

We investigate both primary (i.e., directly emitted) and secondary 
(i.e., formed in the atmosphere from other emissions) PM2.5. We 
model secondary PM2.5 formed from volatile organic compounds, 
oxides of nitrogen and sulfur (NOx and SOx), and ammonia (NH3). 
We aggregate the 5434 SCCs (source “types”) into 14 source sectors 
(table S1), each accounting for >1% of total PM2.5 exposure. InMAP 
predicts concentrations at a spatial scale ranging from 48 km in ar-
eas with low population density to as fine as 1 km in urban centers; 
this intraurban spatial scale is necessary to resolve differences in 
exposure among demographic groups (26). The population-weighted 
average horizontal grid cell edge length is 10.8 km nationwide and 

3.4 km in urban areas. Additional grid statistics can be found in 
table S2.

The source-receptor matrix relates emissions in any one location 
in a gridded spatial domain to InMAP-computed concentrations in 
all other locations. These relationships are generated with indepen-
dent simulations of the air quality model for each of over 50,000 
grid cells covering the contiguous United States for both ground-level 
and elevated sources.

Population-weighted average ambient concentrations, our mea-
sure of exposure, are calculated using a conventional approach to 
weighted averages. Specifically, we first multiply, for each grid cell, 
the population and the concentration. The sum of those values 
across all cells in the given spatial domain is then divided by the 
corresponding population to yield the population-weighted average 
concentration: PWA = (PC)/(P). Here, PWA is the population- 
weighted average, P is the population in a grid cell, C is the concen-
tration in a grid cell, and the summations in the numerator and 
denominator are across all grid cells in the geography being studied 
(e.g., in a state, in the contiguous United States).

Population data by race-ethnicity are from the U.S. Census 
2012–2016 American Community Survey (ACS) at Census Block 
Group level of spatial aggregation. We focus on the four largest race- 
ethnicity groups as determined by self-identification in the Census: 
Asian, Black or African American, Latino or Hispanic, and White. 
We aggregate these four population subgroups such that they are 
mutually exclusive: “Hispanic” including people of all races who 

A B C D E

F G H I J

K L M N O

Fig. 3. Percent of PM2.5 exposure caused by emission source types that disproportionately expose each racial-ethnic group by location and race-ethnicity. 
Icon area is proportional to population; shaded areas are kernel density estimates. This figure is analogous to Fig. 2 but with results for all five racial-ethnic groups. 
Source: data file S2.
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identify as having Hispanic or Latino origin, and the other three 
groups (Asian, Black, and White) referring only to non-Latino/
non-Hispanic persons. POC are defined herein as everyone except 
non-Latino/non-Hispanic Whites (i.e., individuals identifying as 
Hispanic plus non-Hispanic individuals identifying as Black or 
African American, American Indian or Alaska Native, Asian, 
Native Hawaiian and other pacific islander, some other race, or two 
or more races).

The 2012–2016 ACS provides income statistics by Census Tract, 
with 16 household income categories (lowest: “less than $10,000”; 
highest: “$200,000 or more”). We use the proportion of households 
in each income category to estimate population counts at the finest 
available level of race-ethnicity information: White and POC. Table 
S3 details the population distribution by income category.

To calculate exposure in individual urban areas, we use year 2018 
urbanized area extents as defined by the U.S. Census (www.census.
gov/geographies/mapping-files/time-series/geo/carto-boundary-file.
html). We define “rural” as everywhere that is not within an urban-
ized area extent.

To calculate exposure by 1930s-era Home Owners’ Loan Corpo-
ration (HOLC) grades, we use historical maps digitized by the Mapping 
Inequality project (27). HOLC maps classify urban neighborhoods 
into four grades: A (green; “best”), B (blue; “still desirable”), C (yellow; 
“definitely declining”), and D (red; “hazardous”). For results shown 
in fig. S2, we define “% exposure from disproportionately exposing 
source types” as the percent of exposure that is caused by source 
types that expose residents of a given race-ethnicity currently living 
in an area with the given historical HOLC grade in a given city more 
than the overall average exposure of all residents of HOLC-graded 
areas in that city.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/18/eabf4491/DC1
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