LOCAL ANESTHETICS AND REGIONAL ANESTHESIA

Dr Mahmoud Al-mustafa Associate professor/ Faculty of medicine Department of anesthesia

Local Anesthetics- History

- 1860 cocaine isolated from *erythroxylum* coca
- Koller 1884 uses cocaine for topical anesthesia
- Halsted 1885 performs peripheral nerve block with local
- Bier 1899 first spinal anesthetic

Local Anesthetics - Definition

A substance which reversibly inhibits nerve conduction when applied directly to tissues at non-toxic concentrations

- Local anesthetics block generation, propagation, and oscillations of electrical impulses in electrically excitable tissue.
- Mainly by acting on Na channels.

PHARMACOLOGY AND PHARMACODYNAMICS

Clinically used local anesthetics consist of lipidsoluble, substituted benzene ring linked to amine group via alkyl chain containing either an amide or ester linkage.

 Type of linkage separates local anesthetics into either aminoamides (metabolized in liver) or aminoesters (metabolized in liver or by plasma cholinesterase).

Local Anesthetics - Classes

Local anesthetics - Classes

<u>Esters</u> Cocaine Chloroprocaine Procaine Tetracaine

<u>Amides</u> Bup<u>i</u>vacaine L<u>i</u>docaine Rop<u>i</u>vacaine Et<u>i</u>docaine Mep<u>i</u>vacaine

Local anesthetics - Formulation

Biologically active substances are frequently administered as very dilute solutions which can be expressed as *parts of active drug per 100 parts of solution (grams percent)*

Ex.: 2% solution =

2 grams	=	<u>2000 mg</u>	=	<u>20 mg</u>
100 cc's		100 cc's		1 cc

Local anesthetics - vasoconstrictors

Ratios

Epinephrine is added to local anesthetics in *extremely* dilute concentrations, best expressed as a ratio of grams of drug:total cc's of solution. Expressed numerically, a 1:1000 preparation of epinephrine would be

1 gram epi	1000 mg epi	1 mg epi
= 1000 cc's solution	= 1000cc's solution =	1 cc

Local anesthetics - vasoconstrictors

Therefore, a 1:200,000 solution of epinephrine would be

1 gram epi

200,000 cc's solution

1000 mg epi

200,000 cc's solution

or

5 mcg epi

1 cc solution

Bupivacaine

Amide

- Infiltration: Dose: 2mg/kg
- •Concentration : 0.25 % or 0.5 %

Example a 50 kg patient, how much 0.25 % Bupivacaine can I use for infiltration to excise lipoma in the forearm?

50 Kgmax 2mg/Kg 50 Kg = 100 mg $0.25\% \dots 2.5 \text{ mg/ml}$ So maximum mls for infiltration is 100/2.5 = 40 ml

Bupivacaine

Epidural anesthesia: Use 0.5-0.75%, moderate onset, 2- to 5-hr duration, max dose 175 mg (225 mg with epinephrine)

- Spinal anesthesia: Use 0.5-0.75%, fast onset,
 1- to 4-hr duration, max dose 20 mg
- levo (-) bupivacaine less cardiotoxic than racemic bupivacaine, same

Amide

 Infiltration: use 1% or 2 %, fast onset, 2- to 8hr duration, max dose (5 mg/Kg without Epinephrine and 7 mg/Kg with Epinephrine)

•Why Epinephrine increase safety margin ?

Lidocaine

Epidural anesthesia: use 1.5-2%, fast onset, 1- to 2-hr duration, max dose 300 mg (500 mg with epinephrine)

- Spinal anesthesia: use 1.5-2%, fast onset, 0.5- to 1hr duration, max dose 100 mg
- Topical anesthesia: use 4%, fast onset, 0.5- to 1-hr duration, max dose 300 mg
- IV regional: Use 0.25-0.5%, fast onset, 0.5-1 hr duration, max dose 300 mg

Local Anesthetics - Allergy

- True allergy is very rare
- Most reactions are from ester class ester hydrolysis (normal metabolism) leads to formation of PABA - like compounds
- Patient reports of "allergy" are frequently due to previous intravascular injections

Local Anesthetics - Toxicity

Tissue toxicity - Rare

- Can occur if administered in high enough concentrations (greater than those used clinically)
- Usually related to preservatives added to solution

Systemic toxicity - Rare

- Related to blood level of drug secondary to absorption from site of injection.
- Range from lightheadedness, tinnitus to seizures and CNS/cardiovascular collapse

Local anesthetics - vasoconstrictors

Vasoconstrictors should not be used in the following locations

- Fingers
- Toes
- Nose
- Ear lobes
- Penis

SPINALS, EPIDURALS AND CAUDALS

DR Mahmoud Al-mustafa

Introduction

Two main types of anaesthesia – general and regional.

- REGIONAL anaesthesia Drugs administered directly to the spinal cord or nerves to locally block afferent and efferent nerve input.
- Indications
- Contraindications
- Equipment
- Technique
- Complications

Definitions

Regional anaesthesia – The use of local anaesthetic either alone or to supplement general anaesthesia aiming to prevent or reduce nerve conduction of painful impulses to higher centres.

- Spinal anaesthesia Injection of a local anaesthetic directly into the CSF within the sub-arachnoid space.
- Epidural anaesthesia Injection of a local anaesthetic into the potential space *outside* the dura.
- Caudal anaesthesia Injection of local anaesthetic into the caudal canal producing block of the sacral and lumbar nerve roots.

What is the difference between spinal anesthesia and epidural anesthesia Level of insertion Site of insertion Catheter use Onset of action Nature of effect (sensory, motor, sympathatic) Type of surgery

Contraindications to regional techniques

ABSOLUTE

RELATIVE

- Patient refusal
- Anticoagulation / coagulopathy
- Local anaesthetic allergy
- Localised infection
- Untreated hypovolaemia
- Fixed cardiac output state eg aortic stenosis

- Systemic sepsis
- Raised ICP
- Skeletal anomalies
- Neurological disease
- Previous local surgery
- Unco-operative patient

Spinal needle

Layers to reach CSF

Identification of epidural space

Loss of resistance techniqe Role of U/S

Complications of neuroaxial anesthesia

	<u>Complications</u>	<u>Estimated</u> <u>frequency</u>	<u>Comments</u>
	Direct nerve damage	1:10,000 - 1:30,000	No effective treatment
	Spinal Haematoma	1:150,000 – 1:220,000	Requires urgent evacuation
	Spinal infection	1:100,000 – 1:150,000	Aggressive Abs +/- evacuation
	Drug error	Unknown	Avoidable, may be fatal
	Systemic toxicity	Unknown	May be fatal without treatment
	Respiratory depression	Unknown	Especially using opiods
	Hypotension	Common	Early treatment needed
	Confusional states	Common in elderly	Especially using opiods
	Pruritis / nausea / urinary retention	Up to 16% incidence	Treat effectively
	Technical failure	5-25%	Accept failure Consider alternative

Production Volume

Post dural puncture headach Hypotension

Factors affect the incidence of PDPH

Age Gender Length Type of needle Size of needle Experience

Peripheral nerve blocl

Plexuses (Brachial or Lumber) Nerves (Median, Ulnar, femoral, ...)

Blind Nerve stimulator Ultrasound

ANATOMY of BRACHIAL PLEXUS:

A Upper trunk B Middle trunk C Lower trunk D Lateral cord E Posterior cord F Medial cord

Motor supply areas

Peripheral nerve	Muscle	Function
Suprascapular nerve	Supraspinatus/ infraspinatus muscles	Forms parts of the rotator muscles
Axillary nerve	Deltoid muscle	Abduction of the arm in the shoulder joint
Musculocutaneous nerve	Biceps brachii muscle Brachial muscle	Bends the elbow in supination
	Flexor pollicis brevis muscle	Pronates the forearm (flexes proximal phalanx of thumb)
Median nerve	Flexor carpi radialis muscle	Flexes and abducts wrist radialward
	Flexor digitorum profundus muscle (I-III)	Flexes and adducts the thumb, flexes fingers I-III
Radial nerve	Triceps brachii muscle	Extends elbow
	Extensor carpi radialis (brevis) muscle	Extends and abducts wrist radialward
	Extensor digitorum muscle	Extends and flexes the hand dorsally Extends and spreads the fingers
Ulnar nerve	Flexor carpi ulnaris muscle	Flexes and abducts wrist ulnarward
	Flexor digitorum profundus muscle (IV-V)	Flexes fingers (IV-V)
	()	

- 1 Supraclavicular nerves (from the superficial cervical plexus)
- 2 Axillary nerve
- 3 Musculocutaneous nerve
- 4 Radial nerve
- 5 Medial cutaneous nerve of the arm
- 6 Medial cutaneous nerve of the forearm
- 7 Median nerve
- 8 Ulnar nerve

STIMULATION NEEDLES:

•COMPLETELY INSULATED, EXCEPT FOR THE TIP.

HAVE NO SHARP EDGES.

MONOPOLAR OR UNIPOLAR.

THE ELECTRICAL CURRENT HAS A VERY SMALL EXIT OPENING.

HIGHER CURRENT DENSITY AT THE TIP OF THE NEEDLE.

•EXACT LOCALISATION, RISK OF INJURY AT A MINIMUM.

Fig. 6: Nerve stimulator: Stimuplex[®] HNS 12 (B. Braun Melsungen AG)

Fig. 7/8: Stimulation needles: Stimuplex[®] D / Contiplex[®] D / Contiplex[®] Tuohy (B. Braun Melsungen AG)

PUNCTURE SITE, TECHNIQUE: VIDEO1

• ANT. APPROACH

Anatomical landmarks

Superior thyroid notch, sternocleidomastoid muscle (posterior scalene gap)

Fig. 11: Interscalene nerve block: Modification according to G. Meier

- 1. Cricoid
- 2. Superior thyroid notch
- 3. Sternocleidomastoid muscle

- 4. Puncture site for anterior access
- 5. Vertical, infraclavicular puncture site

Thank you

