


Virucidal activity of WHO formulations I (85 % ethanol) and II (75 % 2-propanol) against SARS-CoV-2. WHO formulations I (A) and II (B) were tested for their efficacy in inactivating SARS-CoV-2. The concentrations of the WHO formulations ranged from 0 % to 80 % with an exposure time of 30 seconds. Viral titers are displayed as 50 % tissue culture infectious dose 50 (TCID₅₀/mL) values. Cytotoxic effects are displayed as dashed bars are and were calculated analogous to virus infectivity. RFs are included above the bar. The mean of two - three independent experiments with standard deviation are shown. LLOQ: lower limit of quantification. Top inserts: Regression analysis of the inactivation of SARS-CoV-2, bovine CoV (BCoV), SARS-CoV and MERS-CoV by WHO formulation I (A) and II (B). Depicted is the percentage of inactivation at different concentrations.

Effect of alcohols on SARS-CoV-2. Commercially available ethanol (A), or 2-propanol (B) were tested for their efficacy in inactivating SARS-CoV-2. The biocide concentrations ranged from 0 % to 80 % with an exposure time of 30 seconds. Viral titers are displayed as 50 % tissue culture infectious dose 50 (TCID₅₀/mL) values. Cytotoxic effects are displayed as dashed bars are and were calculated analogous to virus infectivity. LLOQ: lower limit of quantification. RFs are included above the bar. Dashed line: limit of detection. The mean of two - three independent experiments with standard deviation are shown.

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.986711. this version posted March 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

1 Efficient inactivation of SARS-CoV-2 by WHO-recommended hand rub

2 formulations and alcohols

3	Annika Kratzel ^{1,2,3} , Daniel Todt ⁴ , Philip V [*] kovski ^{1,2} , Silvio Steiner ^{1,2,3} , Mitra L.			
4	Gultom ^{1,2,3} , Tran Thi Nhu Thao ^{1,2,3} , Nadine Ebert ^{1,2} , Melle Holwerda ^{1,2,3,7} , Jörg			
5	Steinmann ^{5,6} , Daniela Niemeyer ⁹ , Ronald Dijkman ^{1,2,7} , Günter Kampf ⁸ , Christian			
6	Drosten ⁹ , Eike Steinmann ⁴ , Volker Thiel ^{1,2} , and Stephanie Pfaender ⁴			
7				
8	¹ Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland			
9	² Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of			
10	Bern, Bern, Switzerland			
11	³ Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern,			
12	Switzerland			
13	⁴ Department for Molecular & Medical Virology, Ruhr-Universität Bochum, Germany			
14	⁵ Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany			
15	⁶ Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General			
16	Hospital Nürnberg, Paracelsus Medical University, Nuremberg, Germany			
17	⁷ Institute for Infectious Diseases, University of Bern, Bern, Switzerland			
18	⁸ University Medicine Greifswald, Institute for Hygiene and Environmental Medicine,			
19	Greifswald, Germany			
20 21	⁹ Institute of Virology, Charité Berlin, Berlin, Germany			

22

- 1 Running title: Inactivation of SARS-CoV-2 by WHO formulations and alcohols
- 2 Keywords: SARS-CoV-2, COVID-19, coronavirus, WHO, ethanol, 2-propanol, hand
- 3 rub disinfectant
- 4

5	#Address	for	correspondence
---	----------	-----	----------------

- 6 Prof. Dr. rer. nat. Stephanie Pfänder
- 7 Department for Molecular & Medical Virology
- 8 Ruhr-Universität Bochum
- 9 Universitätsstrasse 150
- 10 44801 Bochum
- 11 Germany
- 12 Email: stephanie.pfaender@ruhr-uni-bochum.de
- 13 Phone: +49 234 32 29278
- 14

15 **Financial support**

- 16 This study was supported by the European Commission (Marie Sklodowska-Curie
- 17 Innovative Training Network "HONOURS"; grant agreement No 721367), and by the
- 18 Federal Ministry of Education and Research, Germany (BMBF; grant RAPID,
- 19 #01KI1723A).
- 20
- 21 Conflict of interest: The authors do not have a conflict of interest.
- 22 Number of figures and tables: 2
- 23 Word count Abstract: 109
- Word count text: 873
- 25

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.986711. this version posted March 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

1 Abstract

2 The recent emergence of Severe acute respiratory syndrome coronavirus 2 (SARS-3 CoV-2) causing COVID-19 is a major burden for health care systems worldwide. It is 4 important to address if the current infection control instructions based on active 5 ingredients are sufficient. We therefore determined the virucidal activity of two 6 alcohol-based hand rub solutions for hand disinfection recommended by the World 7 Health Organization (WHO), as well as commercially available alcohols. Efficient 8 SARS-CoV-2 inactivation was demonstrated for all tested alcohol-based disinfectants. 9 These findings show the successful inactivation of SARS-CoV-2 for the first time and 10 provide confidence in its use for the control of COVID-19.

11

12 **Importance**

The current COVID-19 outbreak puts a huge burden on the world's health care systems. Without effective therapeutics or vaccines being available, effective hygiene measure are of utmost importance to prevent viral spreading. It is therefore crucial to evaluate current infection control strategies against SARS-CoV-2. We show the inactivation of the novel coronavirus for the first time and endorse the importance of disinfectant-based hand hygiene to reduce SARS-CoV-2 transmission.

19

20 Introduction

SARS-CoV-2 is the third highly pathogenic human CoV to have crossed the species barrier into humans during the last 20 years^{1,2,3}. SARS-CoV-2 infection is associated with coronavirus disease 2019 (COVID-19) which is characterized by severe respiratory distress, fever and cough, leading to a high percentage of fatalities,

especially in the elderly or patients with comorbidities⁴. As of March 6th 2020 there are 1 2 101604 globally confirmed cases and related 3460 deaths⁵. Health care experts suspect 3 that a global pandemic is inevitable mainly because human-to-human transmission of 4 SARS-CoV-2 is very efficient and infected individuals can transmit the virus without 5 or with only mild symptoms⁴. Given that so far, no therapeutics or vaccines are 6 available, virus containment and prevention of infection are of highest priority. 7 Effective hand hygiene is crucial to limit virus spread. Therefore, easily available but 8 efficient disinfectants are crucial. The World Health Organization's 'Guidelines for 9 Hand Hygiene in Health Care' suggests two alcohol-based formulations for hand 10 sanitization to reduce pathogen infectivity and spreading. These recommendations are 11 based on fast-acting and broad-spectrum of microbicidal activity, as well as easy 12 accessibility and safety³. We have previously shown that WHO formulation I and II 13 were able to inactivate the closely related SARS-CoV and MERS-CoV⁶. So far, 14 recommendations to inactivate SARS-CoV-2 were only translated from findings with other coronaviruses⁷. To evaluate if alcohol-based disinfectants are also efficient for 15 16 the inactivation of SARS-CoV-2, we tested different concentrations of WHO 17 formulation I and II, as well as the alcohols ethanol and 2-propanol for their virucidal 18 activity.

19

20 **Results**

SARS-CoV-2 was highly susceptible to the WHO formulations (**Fig. 1**). WHO formulation I, based on 85 % ethanol, efficiently inactivated the virus with reduction factors (RFs) of \leq 5.9 and concentrations between 40 % – 80 % (**Fig. 1A**). Subsequent regression analysis revealed similar inactivation profiles compared to SARS-CoV, MERS-CoV and bovine CoV (BCoV), which is often used as surrogate for highly
pathogenic human CoVs (Fig. 1A). WHO formulation II, which is based on 75 %
isopropanol, demonstrated a better virucidal effect at low concentrations, with
complete viral inactivation and RFs of ≤ 5 at a minimal concentration of 30 % (Fig.
1B). The regression analysis showed an inactivation profile of SARS-CoV-2, which
was in between SARS-CoV, BCoV and MERS-CoV (Fig. 1B).

Next, we addressed the susceptibility of SARS-CoV-2 against the individual components of the WHO recommended formulations which are also the main ingredients of commercially available hand disinfections. Both alcohols, ethanol (**Fig. 2A**) and 2-propanol (**Fig. 2B**) were able to reduce viral titers in 30 s exposure to background levels with RFs between ≤ 4.8 and 5.9 after 30 sec. Furthermore, we could show that a minimal concentration of 30 % ethanol or 2-propanol is sufficient for viral inactivation (**Fig. 2**).

14

15 **Discussions**

This study shows that SARS-CoV-2 can be efficiently inactivated by both WHO formulations implicating their use in health care systems and viral outbreak situations. Notably, both tested alcohols, ethanol and 2-propanol were efficient in inactivating the virus in 30 s at a minimal final concentration of at least 30 %. Alcohol constitutes the basis for many hand rubs routinely used in health care settings. Our findings are therefore of utmost importance in the current outbreak situation to minimize viral transmission and maximize virus inactivation.

23

24 Material and Methods

1 Viral strains and cell culture

SARS-CoV-2 (SARS-CoV-2/München-1.1/2020/929) stocks were propagated on
VeroE6 cells (kindly provided by M- Müller/ C. Drosten, Charité, Berlin, Germany).
VeroE6 cells were cultured in Dulbecco's modified minimal essential medium (Gibco)
supplemented with 10 % heat inactivated fetal bovine serum (Gibco), 1 % nonessential amino acids (Gibco), 100 µg/mL Streptomycin and 100 IU/mL Penicillin
(Gibco) and 15 mM HEPES (Gibco).

8 Chemicals

9 WHO I formulation consists of 85 % ethanol (v/v), 0.725 % glycerol (v/v) and 0.125 %
10 hydrogen peroxide (v/v). The isopropyl-based formulation, WHO II, contains 75 %
11 isopropanol (w/w), 0.725 % glycerol (v/v) and 0.125 % hydrogen peroxide (v/v)⁸. In
12 addition, ethanol (CAS 64-17-5), and 2-propanol (CAS 67-63-0) were investigated.

13 Quantitative Suspension Test and Virus Titration

14 Virucidal activity studies were performed with a quantitative suspension test with 30 15 seconds exposure time³. Briefly, one part virus suspension was mixed with one part 16 organic load (0.3 % bovine serum albumin [BSA] as interfering substance) and eight 17 parts disinfection solution of different concentrations. Following 30 seconds exposure, 18 samples were serially diluted and the $TCID_{50}/mL$ values were determined by crystal 19 violet staining and subsequent scoring the amounts of wells displaying cytopathic 20 effects. TCID₅₀ is calculated by the Spearman & Kärber algorithm as described⁹. 21 Cytotoxic effects of disinfectants were monitored by crystal violet staining and optical 22 analysis for altered density and morphology of the cellular monolayer in the absence of 23 virus and were quantified analogous to the TCID₅₀/mL of the virus infectivity.

24 Statistical Analysis

7

Dose-response curves (normalized virus inactivation [%] vs. log (disinfectant 1 2 concentration [%]) were determined using nonlinear regression using the robust fitting 3 method on the normalized 50 % tissue culture infectious dose (TCID₅₀) data 4 implemented in GraphPad Prism version 8.0.3 for Windows. Reference curves for 5 SARS-CoV, MERS-CoV and BCoV were plotted based on previously published data⁶. 6 The mean TCID₅₀ and standard deviations of means were assessed from 2-3 individual 7 experiments. Outlier were identified using Grubb's test (GraphPad Prism). Reduction 8 factors (RF) for each treatment condition were calculated as follows:

9
$$RF = treatment - control = log_{10}\left(\frac{\sum_{i=1}^{n} x_i}{n}\right) - log_{10}\left(\frac{\sum_{j=1}^{m} x_j}{m}\right)$$

- 10
- 11

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.986711. this version posted March 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

1 Acknowledgments.

- 2 We would like to thank all members of Institute of Virology and Immunology, Bern
- 3 and the Department for Molecular & Medical Virology for helpful suggestions and
- 4 discussions.
- 5

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.986711. this version posted March 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

1 Figure legends

2 Figure 1

3 Virucidal activity of WHO formulations I (85 % ethanol) and II (75 % 2-4 propanol) against SARS-CoV-2. WHO formulations I (A) and II (B) were tested for 5 their efficacy in inactivating SARS-CoV-2. The concentrations of the WHO 6 formulations ranged from 0 % to 80 % with an exposure time of 30 seconds. Viral 7 titers are displayed as 50 % tissue culture infectious dose 50 (TCID₅₀/mL) values. 8 Cytotoxic effects are displayed as dashed bars are and were calculated analogous to 9 virus infectivity. RFs are included above the bar. The mean of two - three independent 10 experiments with standard deviation are shown. LLOQ: lower limit of quantification. 11 Top inserts: Regression analysis of the inactivation of SARS-CoV-2, bovine CoV 12 (BCoV), SARS-CoV and MERS-CoV by WHO formulation I (A) and II (B). Depicted 13 is the percentage of inactivation at different concentrations.

14

15 **Figure 2**

16 Effect of alcohols on SARS-CoV-2. Commercially available ethanol (A), or 2-17 propanol (B) were tested for their efficacy in inactivating SARS-CoV-2. The biocide 18 concentrations ranged from 0 % to 80 % with an exposure time of 30 seconds. Viral 19 titers are displayed as 50 % tissue culture infectious dose 50 (TCID₅₀/mL) values. 20 Cytotoxic effects are displayed as dashed bars are and were calculated analogous to 21 virus infectivity. LLOQ: lower limit of quantification. RFs are included above the bar. 22 Dashed line: limit of detection. The mean of two - three independent experiments with 23 standard deviation are shown.

24

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.986711. this version posted March 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

1 References

- 2 1. Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in
- 3 patients with severe acute respiratory syndrome. *N Engl J Med.*
- 4 2003;348(20):1967-1976. doi:10.1056/NEJMoa030747
- 5 2. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM.
- 6 Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia.
- 7 *N Engl J Med*. 2012;367(19):1814-1820. doi:10.1056/NEJMoa1211721
- 8 3. WHO(b). WHO Guidelines on Hand Hygiene in Health Care. *World Health*.
- 9 2009;30(1):270. doi:10.1086/600379
- 10 4. Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R. Severe acute respiratory
- 11 syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-
- 12 19): The epidemic and the challenges. *Int J Antimicrob Agents*. 2020:105924.
- 13 doi:10.1016/j.ijantimicag.2020.105924
- 14 5. CSSE Johns Hopkins. Coronavirus COVID-19 Global Cases.
- 15 6. Siddharta A, Pfaender S, Vielle NJ, et al. Virucidal activity of world health
- 16 organization-recommended formulations against enveloped viruses, including
- 17 zika, ebola, and emerging coronaviruses. J Infect Dis. 2017;215(6):902-906.
- 18 doi:10.1093/infdis/jix046
- 19 7. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on
- 20 inanimate surfaces and its inactivation with biocidal agents. J Hosp Infect. 2020.
- 21 doi:10.1016/j.jhin.2020.01.022
- 22 8. Becker B, Brill FHH, Todt D, et al. Virucidal efficacy of peracetic acid for
- 23 instrument disinfection. Antimicrob Resist Infect Control. 2017;6(1).
- 24 doi:10.1186/s13756-017-0271-3

- 1 9. Places G, Hierholzer JC, Killington RA. Cell Culture Cell Culture. *Virol*
- 2 *Methods Man.* 1996;76(1):2-6. doi:10.1016/B978-012465330-6/50003-8

3