Pretreatment drug resistance and new treatment paradigms in firstline ART

Michelle Moorhouse

25 October 2018

SAHCS 2018

University of the Witwatersrand

Disclosures/disclaimers

- Speaker fees and honoraria from Gilead Sciences, AbbVie, Cipla, Mylan, Aspen, Sanofi, Pfizer and Janssen
- Conference sponsorship from BD, Gilead, Janssen, Merck, Cipla and Mylan
- Part of ART optimisation collaborations
- Funding from USAID, Unitaid, SAMRC and study drug donations from ViiV Healthcare and Gilead Sciences for ART optimisation studies

Initaid

Factors influencing drug resistance

Levels of pretreatment HIVDR (PDR)

EFV/NVP pretreatment HIVDR

In several low- and middle-income countries,

1 in 10 maint

adults starting HIV treatment harbour resistant virus

3 in **10 * * * *** *

adults restarting first-line ART with prior exposure to antiretroviral drugs harbour resistant virus

Women

starting first-line ART are two times more likely than men to harbour a resistant virus

5 in 1

young children newly diagnosed with HIV harbour resistant virus

Thanks: Silvia B (WHO)

Pretreatment NNRTI drug resistance in special populations

• In children < 18 months, NNRTI resistance = **63.7%** (95% CI: 59.0-68.4) (single study, South Africa, 2014–16)

Prevalence of any TDR and NNRTI resistance is higher among women than men in the majority of surveys

Prevalence estimates of pretreatment HIV DR

- In children 0–18 years starting ART, NNRTI resistance = **49.3%** (range 7.5–100%) (meta-analysis, 2014–17)
 - Particularly in PMTCT-exposed _ children (4/7 studies found > 50% of PMTCT-exposed children had NNRTI DR)

PDR in treatment-naïve patients in selected countries

Most pretreatment DR is NNRTI resistance

NNRTI and dual-class resistance detected amongst patients enrolled according to prior ART exposure (SA)

15% in ARV-naive

HIVDR: 37% in ART starters with prior exposure to ARVs

Magnitude of effect of PDR on long-term virological outcomes

- Cohort data 2007–09; 6 countries in sub-Saharan Africa¹
- PDR results available for 2579 patients
 - 2404 (93%) had no pretreatment DR Ο
 - 123 (5%) had PDR to \geq 1 prescribed drug Ο
 - 52 (2%) had PDR and received fully active ART
- **CD4+ count** increased less in patients with PDR than in those without (\triangle 35 cells/µL at 12 months; 95% CI 13– 58; p = 0.002)
- A separate retrospective study of 801 HIV-1-infected ARV-naive patients from 2001–09
 - \circ Presence of transmitted NNRTI resistance \rightarrow 1.5-fold increased risk for treatment failure in the first 48 weeks after ART initiation²

More recently

- 1 148 HIV-positive treatment-naïve patients enrolled in trial clinics in rural KwaZulu-Natal
- Pretreatment drug resistance prevalence was 9.5% (109/1,148) at 20% interval and **12.8%** (147/1,148) and 5% thresholds
- Median of 1.36 years (IQR 0.91-2.13), mostly on TDF/FTC/EFV

No difference between those with only NNRTI PDR vs. no PDR at the 5% threshold

1.05, 95%CI=0.82-1.34

2

4

WHO technical update and 2018 guidelines

Population	First-line regimens	Second-line regimens	Third-li
Adults and adolescents	Two NRTIs + DTG	Two NRTIs + (ATV/r or LPV/r)	
(incl. women of childbearing potential and pregnant women)	Two NRTIs + EFV	Two NRTIs + DTG	DRV/r + (if possi
Children (0–10 years)	Two NRTIs + DTG	Two NRTIs + (ATV/r or LPV/r)	optimis genotyp
	Two NRTIs + LPV/r	Two NRTIs + DTG	0 /1
	Two NRTIs + NNRTI	Two NRTIs + DTG	

- Guidelines include recommendations on the selection of ARV drugs in response to high levels of DR¹
 - Recommend countries consider changing their first-line ART regimens away from NNRTIs if levels of NNRTI DR reach 10%

ne regimens

+ DTG + 1–2 NRTIs sible, consider sation using ping)

WHO technical update and 2018 guidelines

Population	First-line regimens	Second-line regimens	Third-li
Adults and adolescents	Two NRTIs + DTG	Two NRTIs + (ATV/r or LPV/r)	
(incl. women of childbearing potential and pregnant women)	Two NRTIs + EFV	Two NRTIs + DTG	DRV/r + (if possi
Children (0–10 years)	Two NRTIs + DTG	Two NRTIs + (ATV/r or LPV/r)	optimis genotyp
	Two NRTIs + LPV/r	Two NRTIs + DTG	0 /1
	Two NRTIs + NNRTI	Two NRTIs + DTG	

- Guidelines include recommendations on the selection of ARV drugs in response to high levels of ${}^{\bullet}$ DR¹
 - Recommend countries consider changing their first-line ART regimens away from NNRTIs if _ levels of NNRTI DR reach 10%

ine regimens

+ DTG + 1–2 NRTIs sible, consider sation using ping)

SINGLE: ABC/3TC/DTG vs TDF/FTC/EFV

the difference = -10%, 90% power)

Conclusions

 Virologic superiority of DTG + ABC/3TC over TDF/FTC/EFV was confirmed at Weeks 96 and 144

Walmsley SL, N Engl J Med. 2013 Nov 7;369(19):1807-18; Walmsley SL, JAIDS 2015; 70:515-9; Walmsley SL, ICAAC 2012. Abs.H556b; Pappa K, ICAAC 2014, Abs. H-647a; Tebas P, AIDS 2015; 29:2459-64

→ Superiority of DTG + ABC/3TC

(95% CI) = 7% (2: 12)

Per protocol Adjusted difference (95% CI) = 9% (4; 13)

DTG + ABC/3TC

89.8

DTG in first-line treatment when NNRTI DR is prevalent

- Rate of HIV DR acquisition of DTG at • a similar level to that of ATV/r
- DTG generally found to be associated with lower risk of toxicity than both EFV and PIs
 - Risk of neurological toxicity is half that of EFV \rightarrow reduced risk of toxicity \rightarrow less discontinuation

Countries in sub-Saharan Africa with substantial prevalence of NNRTI drug resistance in ART initiators should transition from EFV to DTG in first-line ART regimens

2

PIS

Dolutegravir NTD signal Tsepamo study, Botswana

Neural tube defects in

Updated data since 01 May 2018: 4/596 (0.67%)

95% CI still does not overlap with other groups

Guidance on the use of DTG in women

Approach to use of DTG across different guideline making bodies

ART history	Clinical scenarios	DHHS	BHIVA	WHO
	Early pregnancy*			
ART-naive or using	Late pregnancy			
a non-DTG containing	Childbearing age potential, not using contraception			
regimen	Childbearing age potential, using effective/consistent contraception			
	Early pregnancy*			
	Late pregnancy			
On DTG containing regimen	Childbearing age potential, not using contraception			
	Childbearing age potential, using effective/consistent contraception			

* The definition of early pregnancy period varies in different guidelines.

DHHS: < 8 weeks from LMP; BHIVA : 1st trimester; WHO: < up to 8 weeks from conception.

Do not initiate DTG/ switch to other effective options

Initiate /continue to DTG or switch to other effective options

WHO 2018; https://www.bhiva.org/BHIVA-statement-on-Dolutegravir; https://aidsinfo.nih.gov/news/2109/recommendations-regarding-the-use-of-dolutegravir-in-adults-and-adolescents-with-hiv-who-are-pregnant-or-of-child-bearing-potential

Safety and Efficacy of DTG and EFV600 in first-line ART (summary 2018 WHO Systematic Review and NMA)

Major outcomes	DTG vs EFV ₆₀₀	QUALITY
Viral suppression (96 weeks)	DTG better	mo
Treatment discontinuation	DTG better	ł
CD4+ recovery (96 weeks)	DTG better	mo
Mortality	comparable	
AIDS progression	comparable	l
SAE	comparable	

OF EVIDENCE

oderate

high

oderate

low

low

low

LPV/r in first-line treatment when NNRTI DR is prevalent

In RLS, LPV/r-based regimen was associated with significantly fewer virologic failures and resistance mutations

Additionally, high levels of NNRTI resistance observed in children in South Africa and Togo support WHO's 2013 recommendation that all children < 3 years be started on LPV/r-based **regimens**, irrespective of PMTCT exposure¹

DIAMOND: Study design

- DIAMOND is an ongoing, phase 3, single-arm, open-label, prospective, multicentre study evaluating DRV/Cobi/FTC/TAF ۲ in a rapid initiation model of care over 48 weeks
- Objective: Assess efficacy and safety of DRV/Cobi/FTC/TAF in a rapid initiation model of care in newly diagnosed, ٠ HIV-1-infected, treatment-naive patients; baseline viral resistance in the study population

		D/C/F/T/ (800/150/200/			
Day 1 (screening/	↓ Day 3 (±1 week)	▼ Week 4 (±7 days)	Week 24 analysis	Wee (pri	
baseline)	Ine) • Safety assessme of baseline laboratory data*	resistance data		end	
Eligible pati • Adults ≥18 y • ≤2 weeks fr diagnosed	vears of age	 First dose of D/C/F/TA As soon as within 24 log of screening/baseline 	hours • Before re visit safety and	e sults of the baseline d resistance laboratory e available	

*Evaluations could be performed sooner based on the availability of results; +Interim analyses were performed once all patients had been assessed for safety at Day 3 and resistance at Week 4, and were updated when all patients continuing treatment reached Week 24

DIAMOND: Week 24 efficacy

- 91% (99/109) of patients continued treatment through Week 24 No patients discontinued due to receipt of baseline resistance and only 3 discontinued due to safety stopping rules
 - No patients discontinued due to lack of efficacy and no patients had protocol-defined _ virologic failure; there was only 1 discontinuation due to an AE
- Mean HIV-1 RNA decreased from baseline to Week 24 by 3.08 log₁₀ copies/mL
- and 589 \pm 30 cells/mm³ at Week 24

These findings, together with the demonstrated efficacy, high barrier to resistance, safety profile, and convenience of the DRV/Cobi/FTC/TAF single-tablet regimen, suggest that D/C/F/TAF should be considered a recommended treatment option in a rapid initiation model of care

Mean \pm SE CD4 count was 413 \pm 24 at baseline

Most prevalent HIVDR mutations contributing to PDR in South Africa

	20,0%																
 Pretreatment HIVDR: 17.5% 																	
 13.9% had NNRTI resistance 	15,0%																NVF EFV
 3.1% of participants had NNRTI and NRTI resistance 	10,0%																
 0.5% are resistant to NRTI 	5,0%															NVP EFV ETR	$\left \right $
Three participants harboured single major Pl mutations	0,0%		_	_				_	_	_		_			_	RPV	
single major PI mutations (I54V, I84V)	0,070	Total	M41L	A62AV	D67N	K65R	K70E	L74I	V75I	Q151M	M184V	Т215FY	K219E	Total	L100I	K101E	K103N
							NF	RTI									

Rilpivirine? – active against K103N

 Successful switch to RPV/TDF/FTC in HIV-1-infected patients with an isolated K103N mutation acquired during prior NNRTI therapy

NRTI Resistance Mu NNRTI Resistance M		None K103N			
Other Mutations:		None			
N	lucleoside RT	I	No	n-Nucleoside RTI	
lamivudine (3TC)	Susceptible		efavirenz (EFV)	High-level resistance	
abacavir (ABC)	Susceptible		etravirine (ETR)	Susceptible	
zidovudine (AZT)	Susceptible		nevirapine (NVP)	High-level resistance	
stavudine (D4T)	Susceptible		rilpivirine (RPV)	Susceptible	
didanosine (DDI)	Susceptible				
emtricitabine (FTC)	Susceptible				
tenofovir (TDF)	Susceptible				

RT Comments

NNRTI

K103N causes high-level resistance to NVP, and EFV. it has no effect on ETR or RPV susceptibility.

ECHO/THRIVE study results: TDF/FTC/RPV vs TDF/FTC/EFV

ECHO and THRIVE Week 48 analysis: VL < 50 copies/mL by baseline VL (ITT-TLOVR)

- N(t)RTI background had no effect on virologic response
- No differences between treatment groups in virologic response by gender, region or race

- 2541 treatment-naïve patients started 2583 episodes of treatment with a new third agent
- Compared with EFV, patients on RPV were least likely to discontinue treatment, whilst patients on • LPV/r were most likely to discontinue treatment, followed by RAL

Hazard ratio (95% CI)

Reference 0.33 (0.20; 0.54) 2.80 (2.30 ; 3.40) 1.06 (0.88 ; 1.29) 0.94 (0.77 ; 1.14) 1.47 (1.12 ; 1.92)

ICONA: Comparison of durability of first-line EFV and RPV with TDF/FTC

ARV-naïve		EFV + TDF/FTC	
Baseline viral loa HIV RNA < 100 000 cop		RPV + TDF/FTC	
	EFV with TDF/FTC	RPV with TDF/FTC	
Discontinue ≥ 1 drug in regimen	26%	13%	

- After adjustment, compared to those starting RPV, patients treated with EFV were more likely to discontinue at least one drug
 - for any cause [relative hazard (RH) 4.09; 95% CI 2.89 5.80]
 - for toxicity (RH 2.23; 95% CI 1.05 4.73)
 - for intolerance (RH 5.17; 95% CI 2.66 10.07)
 - for proactive switch (RH 10.96; 95% CI 3.17 37.87)
- RPV was better tolerated, less toxic and showed longer durability than EFV, without a significant difference in rates of discontinuation because of failures

P < 0.0001

Other future options? Doravirine retains antiviral potency against the most prevalent NNRTI-associated resistant viruses

Using clinically relevant concentrations of each drug corrected for protein binding, no viral breakthrough was detected with **doravirine** in resistance selections using K103N, Y181C, and K103N/Y181C mutants

Other future options? Bictegravir and cabotegravir show activity against InSTI- and NNRTI-associated resistant viruses

Cabotegravir has shown efficacy against five different NNRTIresistant or NRTI-resistant viruses, with activity equivalent to that against wild-type virus (fold change values ranged from 0.9 to 1.4)

Reduced drug regimens in ARV-naïve patients

DTG-based dual therapy regimens

	Name	Design	Regimen(s)	Ν	Popu
Γ	SWORD 1	Open label	DTG/RPV versus continue	1024	Virologically suppre
	and 2	RCT switch	regimen		
	PADDLE	Pilot	DTG/3TC	20	ARV-naïve; VL < 100
	ACTG 5353	Single arm	DTG/3TC	120	ARV-naïve; VL = 100 copies/mL
Γ	GEMINI 1	RCT double blind	DTG/3TC versus	1433	ARV-naïve; VL = 100
	and 2		DTG + TDF/FTC		copies/mL
	LAMIDOL ANRS 167	Single arm	DTG/3TC	104	Virologically suppres NRTIs + PI/ NNRTI/I
	ASPIRE	RCT switch	DTG/3TC versus continue regimen	89	Virologically suppres
	TANGO	Open label RCT switch	DTG/3TC versus TAF- based regimen	750	Virologically suppres regimen

/InSTI essed essed on TAF-based

- essed on first line 2
- $00 500\ 000$
- $00 500\ 000$
- 00 000 copies/mL
- essed; no prior VF
- ulation

GEMINI: DTG + 3TC noninferior at 48 weeks

Parallel randomised double blind phase 3 non-inferiority studies

- No treatment-emergent InSTI or NRTI mutations in patients with VF in either arm ٠
- Confirmed VF with DTG + 3TC: n = 6; Confirmed VF with DTG + TDF/FTC: n = 4 ٠
- Bone and kidney safety markers more favourable with DTG + 3TC vs DTG + TDF/FTC ٠

DTG + 3TC was noninferior versus 3-drug therapy; no resistance in either arm

*Adjusted for HIV-1 RNA (< vs > 100 000 copies/mL), CD4+ cell count(< vs > 200 cells/uL), and study (GEMINI-1 vs GEMINI-2). [†]PP = the ITT-E population excluding significant protocol violations

Treatment difference*

SWORD 1 and 2: Switch from current ART to DTG + RPV dual regimen

Objectives: To evaluate the efficacy and safety of DTG + RPV compared with continuation of current ART regimen (CAR) for 48 weeks in a large randomised population with suppressed viral load

Primary endpoint: Proportion of participants with virologic failure (HIV-1 RNA \geq 50 copies/mL)

SWORD 1 and 2: Switch from current ART to DTG + RPV dual regimen

Week 48 efficacy

Baseline characteristics

DTG + RPV was non-inferior to CAR (current ART regimen) over 48 weeks in participants with HIV suppression Results support the use of this two-drug regimen to maintain HIV suppression

DTG + RPV (n=513) Baseline ART (n=511)

Treatment difference: -0.2%

DUAL: DRV/3TC vs DRV/r + 2NRTIs

Baseline characteristics

Week 48 efficacy

	DRV/r + 2NRTI N = 123	DRV/r + 3TC N = 126	Difference (95% IC) -3.8 (-11.0; 3.4)
Baseline CD4+/uL, median	568	596	¹⁰⁰ 88.9 92.7 D
Nadir CD4+/uL, median	240	253	
Duration of HIV RNA <50 copies/mL (weeks), median	113 (p = 0.014)	79.5	C = 08 (%)
HCV coinfection, %	22.8	25.4	
N(t)RTI at baseline, % TDF/FTC ABC/3TC	76 24	74 26	20 -
Discontinued at Week 48, N (%)	4 (3.3)	9 (7.1)	0 HIV RNA <50 c/mL HIV RNA ≥50
AE / confirmed VF	2/0	1/2	
Withdrew / lost to f-up	1/1	3/3	

- Dual therapy with DRV/r plus 3TC was non-inferior regarding maintenance of viral suppression and equally well tolerated as DRV/r plus • TDF/FTC (or ABC/3TC)
- Persistent virological suppression was maintained after switching to dual therapy with DRV/r plus 3TC •

Prevalence of NNRTI pretreatment resistance by calendar year across studies

Increasing trends in levels of DR observed

Will they continue to increase?

Most DR strains arise independently \rightarrow ARV regimens with a **high genetic barrier** to resistance and improved patient adherence may mitigate DR increases by reducing the generation of new ARV-resistant strains¹

Addressing PDR

\checkmark chance of transmitting resistant virus

Improve adherence	Strengthen adherence support
Potent fixed-dose combination regimens	Suppress HIV-RNAHigh adherence
	 Promptly switch individuals with confirmed VF to second-line treatment

Minimise time spent on a failing regimen with
resistant virus

- Perform viral load monitoring
- HIV-DR testing with failure

Use agents with high	•	Change first-line regimen at a national level, from an
genetic barrier	J	NNRTI-based regimen to DTG- or PI/r-based regimen

VL monitoring

Which is the more costeffective strategy?

Factors influencing drug resistance

Factors influencing drug resistance

Acknowledgements

Pretreatment drug resistance and new treatment paradigms in firstline ART

Michelle Moorhouse

25 October 2018

SAHCS 2018

University of the Witwatersrand

Michelle Moorhouse

October 2018

27th International Workshop on HIV Drug **Resistance and Treatment** Strategies

Pretreatment drug resistance and new treatment paradigms in firstline ART

University of the Witwatersrand

