

Module 4 PREVENTION OF CHILDHOOD TB

International Union Against Tuberculosis and Lung Disease

Available approaches to prevent TB in children

Improved case-finding and management	Early identification and effective treatment of infectious TB cases will reduce the burden of child TB

Available approaches to prevent TB in children

Improved case-finding and management	Early identification and effective treatment of infectious TB cases will reduce the burden of child TB
BCG	Neonatal BCG immunisation is used widely but efficacy is variable
	The main proven benefit of neonatal BCG is protection against severe disseminated forms of TB in children

- BCG more protective against disseminated TB and TBM than pulmonary TB
- BCG has a role in prevention of leprosy
- BCG effectiveness to protect from TB also depends on:
 - BCG strain used
 - Age it is given
 - Region

BCG protects against disseminated TB in children

	Publication date	Efficacy (%, 95% CI)		Publication date	Efficacy (%, 95% CI)
Tuberculous meningitis			Miliary tuberculosis		
Buenos Aires, Argentina	1988	98% (70 to 100)	Buenos Aires, Argentina	1988	78% (28 to 93)
Bahia, Brazil	1991	91% (78 to 97)	Yangon, Burma	1987	80% (45 to 92)
São Paulo, Brazil	1990/93	87% (72 to 94)	Papua New Guinea*	1980	70% (0 to 91)
São Paulo, Brazil	1990/93	92% (65 to 98)	Djakarta, Indonesia	1983	75% (5 to 94)
Belo Horizonte, Brazil	1988	81% (47 to 93)	Summary efficacy		77% (58 to 87)
Belo Horizonte, Brazil	1988	65% (17 to 86)	Summary	, Efficacy	
Yangon, Burma	1987	52% (13 to 73)	•	•	770/
Nagpur, India	1996	87% (70 to 94)	williary it	uberculosis	77%
Chennai, India	1996	77% (63 to 86)			
Delhi, India	1996	64% (30 to 81)	1) Summary Efficacy		
Delhi, India	1989	84% (69 to 97)	Tuberculo	ous Mening	itis 73%
Lucknow, India	1999	47% (-6 to 74)		C	
Papua New Guinea*	1980	58% (-36 to 87)			
Delhi, India	1993	56% (-49 to 87)			
Summary efficacy		73% (67 to 79)			

Trunz, et al. Lancet 2006

Available approaches to prevent TB in children

Improved case-finding and management	Early identification and effective treatment of infectious TB cases will reduce the burden of child TB		
BCG	Neonatal BCG immunisation is used widely but efficacy is variable		
	The main proven benefit of neonatal BCG is protection against severe disseminated forms of TB in children		
Contact screening and management	This has huge potential to reduce the burden of TB in children		
	Focus is on individuals infected with TB that have greatest likelihood of developing active TB disease following infection – this includes infants, young children and HIV-infected children of any age		
	Widely recommended but uptake by families and implementation by NTP are poor		

Adapted from Marais B, et al. Int J Tuberc Lung Dis 2004

Studies of child contacts in African communities

- One-third to two-thirds of child household contacts of TB cases have evidence of TB infection i.e. TST positive
- Incidence of TB disease among household contacts is very high – reported as >1,000 cases/100,000 population
- Likelihood of infection is related to closeness/proximity of contact to and sputum smear positivity of index case
- Risk of infection greatest when the index case is the child's carer e.g. mother, grandmother
- HIV-infected children are at increased risk of exposure to TB

Kenyon TA et al, Int J Tuberc Lung Dis 2002; Sinfield R, et al Ann Trop Paediatr 2006; Jackson-Sillah D, et al Trans R Soc Trop Med Hyg 2007; Morrison J, et al Lancet Infect Dis 2008

Studies of child contacts in Asian countries

Study	Location	No. of child contacts	Proportion with TB infection	Proportion with TB disease
Andrew et al	India	398	39 %	5.5 %
Narain et al	India	790	24 %	NR
Kumar et al	India	142	NR	3 %*
Singh et al	India	281	34 %*	3 %*
Rathi et al	Pakistan	151	27 %	NR
Salazar et al	Philippines	153	69 %	3 %
Tornee et al	Thailand	500	47 %	NR
Nguyen et al	Lao PDR	148	31 %	NR
Okada et al	Cambodia	217	24 %*	9 %*

From Triasih R et al, J Trop Med 2012

* Data only for < 5 years; NR: not recorded

Proportion of children with TB infection (positive TST) by degree of smear positivity of the source case

Kenyon TA et al, Int J Tuberc Lung Dis 2002

Increased risk of TB exposure among young children in HIV-endemic countries

From: Reider HL. Interventions for TB control and elimination. IUATLD publication 2002

More evidence to support screening of child contacts of TB cases: if not now, then when?

Graham SM, Triasih R. Clin Infect Dis 2013

- Evidence that informs the rationale for screening child TB contacts available for over 50 years
- Policy universally accepted but rarely implemented
- Contact screening has two main roles:
 - to identify at-risk contacts such as young or HIV-infected children that require preventive therapy
 - to identify contacts of any age that have tuberculosis i.e. active casefinding.

Why is child contact screening important? Prevent child morbidity and mortality

• The prevalence of TB infection is high among child contacts

Triasih R et al, J Trop Med 2012

- Child household TB contacts had significant increase risk of allcause mortality compared to children living in non-TB households in same community
 - If mother had TB, 8-fold increase: MRR 7.82 (95% CI 2.1-30)

AF Gomes et al, Thorax 2011

- Missed opportunities for IPT were common (71%) in at-risk children that later presented with confirmed TB disease
 - 81% were <3 years of age, 25% had disseminated TB and 5% died
 - TB source case was the mother or father in 74/156 (47.4%) children
 K Du Preez et al, Ann Trop Paediatr 2011

Why is contact screening important? Increased case-finding

• The prevalence of TB infection and disease is high among contacts

J Morrison, et al. Lancet Infect Dis 2008

- All TB cases
 4.5% (95% CI 4.3-4.8)
- Confirmed cases
 2.3% (95% CI 2.1-2.5)
- Latent TB infection 51.4% (95% CI 50.6-52.2)
- TB prevalence significantly higher by active case finding in household contacts (1735/100,000) than with passive case finding (191/100,000) R Zachariah et al, Int J Tuberc Lung Dis 2003
- Incidence of TB disease among contacts was 603 per 100,000 (95% CI 370-830)

PC Hill et al, PLoS ONE 2008

and in same community, prevalence of TB cases was 1518 per 100,000 among 2174 contacts of 317 adults with smear-positive PTB

D Jackson-Sillah et al, Trans R Soc Trop Med Hyg 2007

Contact investigation for active TB among child contacts in Uganda

Jaganath D, et al. Clin Infect Dis 2013

- 761 Ugandan child household contacts with TB half 0-5 yrs
- TB confirmed in 7% of child contacts
- More common in the young children disease prevalence extremely high, equivalent to 16,400 per 100,000 young child contacts
- Active case-finding identified 79 children with TB that had not been diagnosed previously
- Only two (<1%) of 483 eligible children developed TB while receiving IPT

Early evidence from USA

- 420 children with positive TST in RCT
- IPT (5mg/kg) versus placebo
- TB meningitis:1 child in IPT versus 6 children in placebo group
- EPTB: 6 children in IPT versus 25 in placebo group Lincoln EM, et al. Pediatrics 1960
- Observational study of 2,494 children received IPT
- 15, 943 person years of observation
- No child < 5 years developed TB
- No reactivation during adolescence

Hsu K, JAMA 1984

IPT reduces the risk of TB disease by around 60% among infected contacts of all ages Smeija MJ et al, Cochrane Databse Syst Rev 2000

Large observational studies suggest that the efficacy may be higher (80-90%) in child contacts

From: Reider HL. Interventions for TB control and elimination. IUATLD publication 2002

Policy Forum

Closing the Policy-Practice Gap in the Management of Child Contacts of Tuberculosis Cases in Developing Countries

Philip C. Hill¹*, Merrin E. Rutherford¹, Rick Audas², Reinout van Crevel³, Stephen M. Graham^{4,5}

1 Centre for International Health, Department of Preventive and Social Medicine, University of Otago School of Medicine, Dunedin, New Zealand, 2 Department of Preventive and Social Medicine, University of Otago School of Medicine, Dunedin, New Zealand, 3 Department of Medicine, Radboud University Njimegen Medical Centre, Njimegen, The Netherlands, 4 Centre for International Child Health, Department of Paediatrics, University of Melbourne, Melbourne, Australia, 5 International Union Against Tuberculosis and Lung Disease, Paris, France

Tropical Medicine and International Health

doi:10.1111/j.1365-3156.2012.03053.x

VOLUME 17 NO 10 PP 1264-1273 OCTOBER 2012

Review

Preventive therapy in children exposed to Mycobacterium tuberculosis: problems and solutions

Merrin E. Rutherford¹, Philip C. Hill¹, Rina Triasih², Rebecca Sinfield³, Reinout van Crevel⁴ and Stephen M. Graham⁵

- 1 Centre for International Health, Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand
- 2 Department of Pediatrics, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
- 3 Mersey Deanery, Liverpool, UK
- 4 Department of Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- 5 Centre for International Child Health, University of Melbourne, Department of Paediatrics and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Vic., Australia

Symptom-based screening is also recommended in the WHO guidance

WHO symptom based screening

Note that contact screening has two important roles

- 1. Active case-finding
- 2. Preventive therapy for at-risk contacts without TB

Management of child contacts

- Decentralise: symptom-based screening provides opportunity to undertake an integrated family-based approach in the community around the source case receiving DOT rather than requiring referral to health facility for all cases
- Adherence: to IPT for 6 months is a major challenge
- Enhanced case-finding: Note that symptom-based screening also aims to identify symptomatic contacts of any age for investigation for possible TB disease

List close contacts

- What is the age of the contact?
- Is the contact HIV-infected?
- Does the contact have any symptoms suggestive of TB?

Checklist of main symptoms

- Persistent cough for more than 2 weeks
- Weight loss or failure to gain weight
- Persistent fever for more than 1 week and/or night sweats
- Fatigue, reduced playfulness, less active

Management of child contacts

Criteria for contacts to receive IPT

No active TB disease – no symptoms suggestive of TB

AND

- At high risk of disease following TB exposure
 - < 5 years
 - HIV-infected

Management of contacts	Response	Action
Symptomatic Sputum smear positive	TB treatment	Register
Symptomatic Sputum smear-negative or not available	Refer for further assessment	Fill referral form for patient to take Fill referral register which stays at health facility
Asymptomatic and high risk	IPT	IPT register
Asymptomatic and not high risk	No treatment	Advise to return if symptoms develop

Sample IPT register

Isoniazid Preventive Treatment Register

PHC centre/Hospital TB control Unit:

Year:

No.	Name of TB contact treated with IPT	Age	Sex	HIV- infected (Y/N)	IPT started on (date)	IPT completed (Y/N)

Average age specific risk for disease development following primary infection (pre-BCG)

Adapted from Marais B, et al. Int J Tuberc Lung Dis 2004

Average age specific risk for disease development following primary infection with BCG

Average age specific risk for disease development following primary infection: BCG and IPT

Available approaches to prevent TB in children

Improved case-finding and management	Early identification and effective treatment of infectious TB cases will reduce the burden of child TB
BCG	Neonatal BCG immunisation is used widely but efficacy is variable The main proven benefit of neonatal BCG is protection against severe disseminated forms of TB in children
Contact screening and management	This has huge potential to reduce the burden of TB in children Focus is on individuals infected with TB that have greatest likelihood of developing active TB disease following infection – this includes infants, young children and HIV-infected children of any age Widely recommended but uptake by families and implementation by NTP are poor
Infection control	Lack of awareness of risk for children attending health facilities with carers – TB wards; TB clinics; HIV clinics

Summary of prevention

- The main effectiveness of neonatal BCG is prevention of severe, disseminated disease in infants and young children
- Child contact screening and management has huge potential to reduce the burden of child TB
- Child contact screening and management can be instituted at the peripheral facility level on the basis of symptom-based screening
- Community-based child contact screening and management is a means of case-finding suspected TB cases of any age
- IPT must be given for at least 6 months to be effective and a major challenge for effectiveness of IPT is adherence and follow-up is critical
- Contact screening and management has huge potential for operational research