Introduction to Measles – a Priority Vaccine Preventable Disease (VPD) in Africa

> Nigeria Center for Disease Control Federal Ministry of Health Abuja July 2015

- 1. Measles disease
- 2. Progress towards measles mortality reduction
- 3. Mortality reduction strategies
- 4. Measles outbreak

- 1. Measles disease
- 2. Progress towards measles mortality reduction
- 3. Mortality reduction strategies
- 4. Measles outbreak

Measles disease

- An acute and highly infectious disease

- Caused by measles virus
- Everyone exposed gets the disease if not immune ($R_0 = 12.5 18.0$)
- Without vaccination program, virtually all are eventually infected
- Fever, Rash and 3Cs (Cough, Conjunctivitis, Coryza)
- Transmission
 - Contact with respiratory secretions or aerosols

Measles disease: Classic manifestations

- Fever
- Maculopapular rash
- The 3C:
 - ✓ <u>C</u>ough
 - ✓ <u>C</u>oryza (runny nose)
 - ✓ <u>Conjunctivitis</u> (red eyes)

Measles virus

- RNA virus
- Family: Paramyxoviridae.
- Genus: Morbillivirus
- Humans are the only reservoir
- Multiplies in the respiratory tract
- Transmitted via respiratory secretions or aerosols

Clinical course of measles

- Incubation period: 14 days (range, 7 18 days)
- **Prodrome:** begins 10 14 days after exposure
 - High fever, cough, coryza, conjunctivitis
 - Period of greatest infectiousness (virus shedding)
- Rash begins: 2 4 days after prodrome starts
- Complications: occur mostly in 2nd and 3rd weeks
 - Any disease or death not clearly due to another cause (e.g., trauma) during the <u>30 days following rash onset</u>
- Case Fatality Ratio (CFR) 0.1 10 %
 - Up to 30% in humanitarian emergencies

Clinical course of measles

Clinical course of measles and antibody dynamics

IgM appear first and disappear within 30 days. Marks the acute infection IgG appear later and remain high for years. Mark immunity

Complications....1

- Complications: any disease or death not clearly due to another cause during the <u>30 days following rash onset</u>
 - Corneal scaring (aggravated by Vit A deficiency)
 - Encephalitis (higher children and adults, 0.1%)
 - Diarrhea
 - Pneumonia (major cause of death)
- Mortality rate
 - 0.1 10%
 - Up to 30% in humanitarian emergencies

Complications....2

Corneal scarring causing blindness Vitamin A deficiency

> **Encephalitis** Older children, adults ≈ 0.1% of cases Chronic disability

Pneumonia & diarrhea

Diarrhea common in developing countries Pneumonia ~ 5-10% of cases, usually bacterial

desquamation

Complications...3

Sub-acute Sclerosing Panencephalitis (SSPE)

- Delayed complication: avg. 7 years after measles infection
- Rare (1 in 100,000 cases)
- Degenerative CNS disorder with personality changes, seizures, motor disability, progressing to coma and death

Prevention: Measles vaccine

- Live attenuated virus vaccine
- Excellent safety records
- Among most effective public health interventions
- Lifelong immunity
- Efficacy:

Age (Months)	Seroconversion* (%)	
6	50	
9	85 (Routine EPI dose)	
12	90	
15	95 (SIA dose)	

Progress in measles elimination in Africa

Estimated deaths 99 Estimated deaths 05

Estimated number of measles deaths by region, 1999 vs. 2005

- 60% reduction worldwide
- 75% in Africa
- 2.3 mil additional deaths prevented

Engine behind this progress

Global commitment

Americas, Europe, E. Mediterranean, W. Pacific have elimination goals

Effective strategic plans

WHO/UNICEF strategic plan for reducing measles 90% reduction in measles-associated child mortality compared to 2000

- 47 priority countries
- 4 strategies

mortality 2006 - 2010

Partnership for Reduction of Measles Mortality in Africa 2001–2005

- Partners: ARC, UNF, IFRC, CIDA, UNICEF, WHO & CDC
- Measles SIAs in 40 countries
- 217 million children immunized
- Est. 1.2 million deaths averted

WHO/UNICEF Strategic Plan 2006-2010

- 47 Priority Countries
- Goal: reduce measles
 mortality by 90% by
 2010 vs. 2000
- Based on 4 strategies

WHO/UNICEF Joint Statement GLOBAL PLAN FOR REDUCING MEASLES MORTALITY 2006-2010

Measles Mortality Reduction Strategies

- Improve case management (Vitamin A supplementation + +)
- 2. Achieve high 1st dose routine vaccination coverage
- 3. Provide 2nd opportunity for vaccination through routine or supplemental activities
- 4. Establish an effective measles surveillance

1 - Improve case management: strategies to

<u>improve case management</u>

2. Achieve high 1st dose routine vaccination coverage

- Administered at 9 months in Nigeria
- Sero-conversion at this age is 85%
- Sub-cutaneaous

3 – Provide second opportunity

Important concept: Herd Immunity Definition

The resistance of a population to attack by a disease to which a large proportion of the members are immune. For measles, this proportion is **95%**

What is Herd Immunity? Scenario 1

Chance for contagious to meet susceptible is high Disease spreads fast. Transmission is sustained. Outbreaks are frequent

What is Herd Immunity?: Scenario 2

Above a certain threshold of population immunity (95% for measles), chance for contagious to come into contact with susceptible is low

Disease spread is limited. Outbreaks are small. This population has Herd immunity

Summary: Herd immunity for measles

When \approx **95%** of the population is immunized against measles:

- Measles virus circulation can be interrupted
- Disease spread is limited (outbreaks are small)
- Non immune individuals remain susceptible

The goal of the vaccination program is to reach and maintain a population immunity > 95%

Vaccinated versus immunized

Susceptible Vaccinated and protected Vaccinated but still susceptible
9 months: Coverage = 100% Sero-conversion
rate = 85%. This population has not reached the
95% population immunity threshold (Herd immunity) necessary to stop measles virus
circulation. A second opportunity is necessary

Second opportunity vaccination will protect those who did not sero-convert with the 1st dose: >95% of this cohort is now protected: the Herd immunity threshold for measles is reached

Coverage and Immunity

- Vaccination coverage not the same as population immunity
- At least <u>95</u>% population immunity required to stop transmission
- 95% population immunity not achievable with only 1 dose (routine) even at high coverage
- Accumulation of susceptible over time. High risk of outbreak when number of susceptibles (primary vaccine failure + unvaccinated) ≥ birth cohort

Second opportunity for vaccination against measles require to rapidly raise population immunity

How the second opportunity works: scenario 1

A country with a birth cohort of 500 000 reports 80% coverage for measles vaccine.

- What is the population immunity?
- Is Herd immunity for measles (95% of the population immune) achieved?

Summary: effect of 2nd opportunity for measles immunization in children > 12 years old

After RI dose at 9 months with 80% coverage:

Accumulation of susceptible Routine 1 dose

Adapted from: de Quadros CA, et al. JAMA 1996;275(3):324-9.

Accumulation of susceptible with second opportunity

500,000 newborns

- ¹⁸⁰⁰ \neg 1st dose coverage = 80%
- ¹⁶⁰⁰ Vaccine efficacy = 85%

1200

¹⁴⁰⁰ - SIA done targeting 1 – 5 years children every 4 years; Coverage

= 95%, vaccine efficacy 95%

4 – <u>Measles surveillance</u>

Systematic and ongoing, collection, analysis, interpretation, dissemination, of data to reduce measles morbidity and mortality

Goals of Measles Surveillance

Case based and aggregate surveillance

Case based

- Collection and storage of data on cases
- A case investigation form for each case
- In the database or line listing, each record represent a case with clinical and lab data
- · Date collected same as in outbreak (see outbreak section)

Aggregate

- A summary count of cases is provided by one or more attributes (place, age group, vaccination status)
- Example: Districts reporting the number of cases of measles by age group, or by vaccination status, by gender

Measles case definitions

Clinical measles = suspected case:

 Fever + rash + cough or conjunctivitis or coryza (the 3C)

– or –

· Clinician suspect measles

Confirmed measles case:

- Lab confirmed: measles IgM positive
- Epidemiological linkage

Measles "lay" case definition to assist communities in notifying health facilities

ANY PERSON with

Laboratory confirmation of suspected measles

Why laboratory confirmation is important?

The predictive value of clinical case definition falls as the incidence of the disease falls. Rule out other causes of rash and fever.

What to collect ?

Blood sample for serum, to test for measles **IgM**

When to collect ?

Collect a blood specimen at 1st contact with the health care system

Between 4 to 28 days after rash onset (high sensitivity)

Day of rash onset plus the next 3 days (70 – 80% of samples will be IgM+)

Measles final classification

- Laboratory-confirmed
- Epidemiologically confirmed

Meet clinical case definition, reported from same district/HF, rash onset after lab-confirmed cases (link to laboratory-confirmed case)

Clinically confirmed

Meet clinical case definition but without adequate blood specimen taken

Discarded

Suspected case, not meet clinical or laboratory definition

Supplements: measles outbreak

WHO Draft Guidelines

- 3 or more suspected cases by district by month
- 1 or more confirmed (IgM+) case by district by month
- 1 or more suspected case in a refugee or internally displaced person camp

PAHO Measles Elimination Guidelines

• " ... a single laboratory-confirmed measles case is considered to be a confirmed measles outbreak."

□ AFRO Measles Surveillance Guidelines

- 5 or more suspected cases by district or health facility by month
- 3 or more confirmed cases by district or health facility by month

Common sources of susceptibles for measles outbreaks

□ Failure to vaccinate

- Low routine coverage
- Low campaign coverage (<95%)

Vaccine failure

- Expected (15% failure at 9 months)
- Unexpected (cold chain problems)

Policy or schedule failure

- Wrong age group targeted during SIA
- Missed birth cohorts (complicated SIA schedule)

□ Migration

- Massive influx of susceptible populations
- Importation of cases

Other

• Children born to HIV+ women

Rational for measles outbreak investigation

- Important source of surveillance data
- Important source of information for program evaluation and research

High visibility – political and ethical issues force an investigation and a response. Chance to advocate and remind about need to improve vaccination programs

Important background information to collect

What is already being done with this outbreak?

Previous surveillance data

- What type of surveillance: case-based or aggregate?
- When were the last epidemics?
- When is the measles season?
- What does the analysis of surveillance data show?

Routine vaccination age and coverage

- Date, age range and coverage of recent SIAs
- Known population movements

Key data to collect from cases

Use line list. Collect same information as in the case report

Person

- Age
- Vaccination status (+ date of last vaccination)
- Outcome alive or dead
- Place
 - Residence at time of rash onset
- Time
 - Date of rash onset = "Date of Onset"

Remember: only take blood from 5 – 10 cases, then stop

Other information sometimes collected during investigations

- □ Reasons for non-vaccination
- Contact information
 - Where was case 7 18 days ago?
 - Where was case in past 4 days?
- □ Basic clinical information
 - Measles symptoms (fever, rash, 3Cs)
 - Complications (diarrhea, pneumonia, encephalitis, otitis media, others)
 - Hospitalized?

Analysis of measles outbreak data

Confirm the outbreak

- Is the number greater than expected?
- Does the definition of an applies

Define the extent of the outbreak

- <u>Time</u>: epidemic curve
- <u>Place</u>: map
- Person: age, immunization status
- Calculate incidence if population data available

Additional data analysis

Measure severity

- Proportion of cases hospitalized
- Proportion of cases with complications
- Deaths (case fatality rate)

□ If possible, measure effectiveness of vaccination

- Attack rate method
- Proportion of cases vaccinated versus proportion of population vaccinated

Measles: Key points

- Leading cause of vaccine-preventable mortality
- Sustainable measles mortality reduction requires 2nd
 opportunity for immunization
- Effective surveillance is needed to direct control strategies
- Control strategies are working!

